Nutrient management of immature rubber plantations. A review

  • Sylvain Vrignon-Brenas
  • Frédéric Gay
  • Sophie Ricard
  • Didier Snoeck
  • Thibaut Perron
  • Louis Mareschal
  • Jean-Paul Laclau
  • Éric Gohet
  • Philippe MalagoliEmail author
Review Article


The rapid expansion of rubber tree plantations in recent decades has been accompanied by dramatic negative ecological and social impacts. Rubber sector stakeholders consequently engaged in sustainable production of rubber. Despite the lack of harvest during the immature stage following planting, this period plays a key role in future yields. Management practices, particularly fertilization regimes, are used by farmers to shorten the immature period as much as possible. This entails maintaining or even improving the productivity of existing plantations to face the demand for natural rubber. This review focuses specifically on the immature period of rubber tree plantations, as it is the most critical period for nutrient management. We reviewed available knowledge on fertilization practices, soil management, and nutrient dynamics in rubber plantations with the goal of developing a nutrient balance approach for this crop. Our review revealed (1) a notable difference between fertilizer recommendations made by technical institutes and those reported in the scientific literature; (2) that even though nutrient diagnostic methods could help growers adapt the fertilization of rubber trees more than 3 years of age, further studies are needed to adapt current methods to the wide range of cultivation areas; and (3) that the nutrient budget approach may be the best way to incorporate the variety of rubber tree cultivation conditions. In conclusion, the nutrient budget method is a promising way to improve the sustainability of rubber plantations through fertilization making it possible to increase nutrient use efficiency. A comprehensive approach based on nutrient budgets requires further in-depth studies to examine nutrient dynamics in a wide range of conditions, including intercropping and logging residue management between clearcutting and replanting.


Rubber tree Immature period Integrated nutrient management Fertilization Intercropping Nutrient budget 



Authors would like to warmly thank Thierry Cauchy (SIPH), Eric Cavaloc (SAPH) et Philippe de Groote (SOCFIN) for sharing their knowledge and experience on the management of fertilization in rubber plantation.

Funding information

This review was carried out in the framework of the FERTIM project funded by the Institut Français du Caoutchouc.

Compliance with ethical standards

Conflict of interest

The authors declare they have no conflict of interest.


  1. Abraham J, Joseph K, Joseph P (2015) Effect of integrated nutrient management on soil quality and growth of Hevea brasiliensis during the immature phase. Rubber Science 28(2):159–167Google Scholar
  2. Achat DL, Deleuze C, Landmann G, Pousse N, Ranger J, Augusto L (2015) Quantifying consequences of removing harvesting residues on forest soils and tree growth—a meta-analysis. For Ecol Manag 348:124–141. CrossRefGoogle Scholar
  3. Ahrends A, Hollingsworth PM, Ziegler AD, Fox JM, Chen H, Su Y, Xu J (2015) Current trends of rubber plantation expansion may threaten biodiversity and livelihoods. Glob Environ Chang 34:48–58. CrossRefGoogle Scholar
  4. Aibara I, Miwa K (2014) Strategies for optimization of mineral nutrient transport in plants: multilevel regulation of nutrient-dependent dynamics of root architecture and transporter activity. Plant Cell Physiol 55(12):2027–2036. PubMedCrossRefGoogle Scholar
  5. Alegre JC, Cassel DK (1996) Dynamics of soil physical properties under alternative systems to slash-and-burn. Agric Ecosyst Environ 58(1):39–48. CrossRefGoogle Scholar
  6. Allé JY, Dick EA, Soumahin EF, Gabla RO, Keli JZ, Obouayeba S (2015) Effect of mineral fertilization on agrophysiological parameters and economic viability of clone PB 235 of Hevea brasiliensis in the region of GO in south western Côte d'Ivoire. J Anim Plant Sci 24(2):3768–3780Google Scholar
  7. Allé Y, Dick A, Soumahin EF, Gabla RO, Keli Z, Obouayeba S (2014) Effect of mineral fertilization on the physicochemical properties of soils in the region of Go and the vegetative behaviour of immature trees of clone PB 235 of Hevea brasiliensis in south-western Côte d'Ivoire. Int J Agron Agric Res 5(2):124–133Google Scholar
  8. Ardika R, Sanchez PB, Badayos RB, Cruz PCS (2017) Growth of PB 260 clone (Hevea brasiliensis (Willd. ex A. Juss.) Muell-Arg.) in different potting media and fertilization scheme. AGRIVITA J Agric Sci 39(2):182–191. CrossRefGoogle Scholar
  9. Aweto AO (1987) Physical and nutrient status of soils under rubber (Hevea brasiliensis) of different ages in south-western Nigeria. Agric Syst 23(1):63–72. CrossRefGoogle Scholar
  10. Bagnall-Oakeley H, Conroy C, Faiz A, Gunawan A, Gouyon A, Penot E, Liangsutthissagon S, Nguyen HD, Anwar C (1996) Imperata management strategies used in smallholder rubber-based farming systems. Agrofor Syst 36(1):83–104. CrossRefGoogle Scholar
  11. Bataglia OC, dos Santos WR (1998) Nutrição e adubação de seringais em formação e produção. In: Ciclo de Palestras sobre a Heveicultura Paulista. Barretos-SP.
  12. Bataglia OC, Santos WR (1999) Efeitos da adubação NPK na fertilidade do solo, nutrição e crescimento da seringueira. Revista Brasileira de Ciência do Solo 23(4):881–890. CrossRefGoogle Scholar
  13. Bataglia OC, Santos WR, Gonçalves PS, Segnini Junior I, Cardoso M (1999) Efeito da adubação NPK sobre o período de imaturidade da seringueira. Bragantia 58:375–374. CrossRefGoogle Scholar
  14. Bataglia OC, Santos WR, Igue T, Gonçalves PS (1998) Resposita da Seringueira clone RRIM 600 à adubacão NPK em solo podzolico vermelho-amarelo. Bragantia 57:367–377. CrossRefGoogle Scholar
  15. Bissonnette J-F, De Koninck R (2017) The return of the plantation? Historical and contemporary trends in the relation between plantations and smallholdings in Southeast Asia. J Peasant Stud 44(4):918–938. CrossRefGoogle Scholar
  16. Blagodatsky S, Xu J, Cadisch G (2016) Carbon balance of rubber (Hevea brasiliensis) plantations: a review of uncertainties at plot, landscape and production level. Agric Ecosyst Environ 221:8–19. CrossRefGoogle Scholar
  17. Boithias L, Do FC, Isarangkool Na Ayutthaya S, Junjittakarn J, Siltecho S, Hammecker C (2011) Transpiration, growth and latex production of a Hevea brasiliensis stand facing drought in northeast Thailand: the use of the wanulcas model as an exploratory tool. Exp Agric 48(1):49–63. CrossRefGoogle Scholar
  18. Bolle-Jones E, Ratnasingam K (1954) Interclonal and seasonal variations in composition of leaves. J Rubber Res Inst Malaya 14:257–275Google Scholar
  19. Bolle-Jones EW (1954) Nutrition of Hevea brasiliensis. III. The inter-relationships of magnesium, potassium and phosphorus. J Rubber Res Inst Malaya 14:209–235Google Scholar
  20. Bolton J (1964) The manuring and cultivation of Hevea brasiliensis. J Sci Food Agric 15(1):1–8CrossRefGoogle Scholar
  21. Broughton WJ (1977) Effect of various covers on soil fertility under Hevea brasiliensis Muell. Arg. and on growth of the tree. Agro-Ecosyst 3(1):147–170. CrossRefGoogle Scholar
  22. Bueno N, Haag HP, Pereira JP, Viégas IJM (1988) Nutrição mineral de seringueira. ix. alumínio no substrato afetando o desenvolvimento, a sintomatologia de toxicidade e a concentração em seringueira (Hevea spp.). Piracicaba 45(1):319–339. CrossRefGoogle Scholar
  23. Carr MKV (2011) The water relations of rubber (Hevea brasiliensis): a review. Exp Agric 48(2):176–193. CrossRefGoogle Scholar
  24. Chacón-Pardo E, Camacho-Tamayo JH, Arguello O (2013) Establishment of DRIS norms for the nutritional diagnosis of rubber (Hevea brasiliensis Muell Arg.) clone RRIM 600 on the Eastern Plains of Colombia. Agronomía Colombiana 31:215–222Google Scholar
  25. Chambon B, Lai DX, Tongkaemkaew U, Gay F (2017) What determine smallholders’ fertilization practices during the mature period of rubber plantations in Thailand? Exp Agric 54:1–18. CrossRefGoogle Scholar
  26. Chandrashekar TR, Nazeer MA, Marattukalam JG, Prakash GP, Annamalainathan K, Thomas J (1998) An analysis of growth and drought tolerance in rubber during the immature phase in a dry subhumid climate. Exp Agric 34(1):288–300. CrossRefGoogle Scholar
  27. Chantuma P, Lacote R, Leconte A, Gohet E (2011) The “double cut alternative” (DCA) tapping system: an innovative tapping system designed for Thai rubber smallholdings using high tapping frequency. Paper presented at the IRRDB International Rubber Conference, Chaing Mai, Thailand, pp 14–17Google Scholar
  28. Chen B, Cao J, Wang J, Wu Z, Xie G (2011) Development and implementation of site-specific fertilizer recommendation model based on nutrient balance for rubber plantation. Agron J 103:464–471. CrossRefGoogle Scholar
  29. Cheng C-M, Wang R-S, Jiang J-S (2007) Variation of soil fertility and carbon sequestration by planting Hevea brasiliensis in Hainan Island, China. J Environ Sci 19(3):348–352. CrossRefGoogle Scholar
  30. Clermont-Dauphin C, Suvannang N, Pongwichian P, Cheylan V, Hammecker C, Harmand J-M (2016) Dinitrogen fixation by the legume cover crop Pueraria phaseoloides and transfer of fixed N to Hevea brasiliensis—impact on tree growth and vulnerability to drought. Agric Ecosyst Environ 217:79–88. CrossRefGoogle Scholar
  31. Compagnon P, Chapuset T, Gener P, Jacob J-L, De La Serve M, De Livonnière H, Nicolas D, Omont H, Serier J-B, Tran Van Canh C, De Vernou P (1986) Le caoutchouc naturel : biologie, culture, production, vol 35. Techniques agricoles et productions tropicales, ParisGoogle Scholar
  32. Correia MAR, Maranhão DDC, Flores RA, da Silva Júnior SF, de Melquisedec Almeida A, Leite RLL (2017) Growth, nutrition and production of dry matter of rubber tree (Hevea brasiliensis) in function of K fertilization. Aust J Crop Sci 11(1):95–101. CrossRefGoogle Scholar
  33. de Blécourt M, Brumme R, Xu J, Corre MD, Veldkamp E (2013) Soil carbon stocks decrease following conversion of secondary forests to rubber (Hevea brasiliensis) plantations. PLoS One 8(7):e69357. PubMedCrossRefPubMedCentralGoogle Scholar
  34. Debasis M, Datta B, Chaudhury M, Dey SK (2015) Nutrient requirement for natural rubber. Better Crops 99(2):19–20Google Scholar
  35. Delabarre M, Benigno D (1994) Rubber: a pictoral technical guide for smollholders. CIRAD-CP, ThailandGoogle Scholar
  36. Delabarre M, Serier J-B (1995) L'hévéa (The rubber tree). Le Technicien d'agriculture tropicale, vol 32. Maisonneuve et Larose, Paris, FranceGoogle Scholar
  37. Dissanayake DMAP, Dissanayake T, Maheepala C, Gunasekera R (1994) Role of rock phosphates in the nutrition of immature and mature Hevea. J Rubber Res Inst Sri Lanka 74(1):42–56Google Scholar
  38. Doré T, Makowski D, Malézieux E, Munier-Jolain N, Tchamitchian M, Tittonell P (2011) Facing up to the paradigm of ecological intensification in agronomy: revisiting methods, concepts and knowledge. Eur J Agron 34(1):197–210. CrossRefGoogle Scholar
  39. Elsevier BV (2018)|Science, health and medical journals, full text, Elsevier BV.
  40. Food and Agriculture Organization of the United Nations (2016) FAOSTAT statistics database.
  41. Feintrenie L, Levang P (2009) Sumatra’s rubber agroforests: advent, rise and fall of a sustainable cropping system. Small-Scale For 8(3):323–335. CrossRefGoogle Scholar
  42. Filho M, Alves FDA (2004) DRIS: concepts and applications on nutritional diagnosis in fruit crops. Sci Agric 61:550–560. CrossRefGoogle Scholar
  43. Fox J, Castella J-C (2013) Expansion of rubber (Hevea brasiliensis) in Mainland Southeast Asia: what are the prospects for smallholders? J Peasant Stud 40(1):155–170. CrossRefGoogle Scholar
  44. George S, Punnoosc KI, Mathew M, Pothen J, Mani J, George ES, Jessy MD (1997) Response of two high yielding Hevea clones to applied fertilizers during immature phase. Indian J Nat Rubber Res 10(1):80–85Google Scholar
  45. Gohet E, Saaban I, Soumahoro M, Uche E, Soumahoro B, Cauchy T (2013) Sustainable rubber production through good latex harvesting practices: an update on mature rubber fertilization effects on latex cell biochemistry and rubber yield potential. In: IRRDB workshop on latex harvesting technology. IRRDB, Binh Duong, Vietnam, p 8Google Scholar
  46. Green JJ, Dawson LA, Proctor J, Duff EI, Elston DA (2005) Fine root dynamics in a tropical rain forest is influenced by rainfall. Plant Soil 276:23–32. CrossRefGoogle Scholar
  47. Gréggio TC, Assis LC, Nahas E (2008) Decomposition of the rubber tree Hevea brasiliensis litter at two depths. Chilean J Agric Res 68(2):128–135. CrossRefGoogle Scholar
  48. Gruhn P, Goletti F, Yudelman M (2000) Integrated nutrient management, soil fertility, and sustainable agriculture: current issues and future challenges. International Food Policy Research Institute, Washington, D.C.Google Scholar
  49. Guardiola-Claramonte M, Troch PA, Ziegler AD, Giambelluca TW, Vogler JB, Nullet MA (2008) Local hydrologic effects of introducing non-native vegetation in a tropical catchment. Ecohydrology 1(1):13–22. CrossRefGoogle Scholar
  50. Guha MM, Singh MM, Chan HY (1971) Use of appropriate fertiliser for rubber based on soil and leaf nutrient survey. J Rubber Res Inst Sri Lanka 48:160–167Google Scholar
  51. Guillaume T, Damris M, Kuzyakov Y (2015) Losses of soil carbon by converting tropical forest to plantations: erosion and decomposition estimated by δ13C. Glob Chang Biol 21(9):3548–3560. PubMedCrossRefGoogle Scholar
  52. Gunasekara HKLK, Nugawela EA, De Costa WAJM, Attanayake DPSTG (2007) Possibility of early commencement of tapping in rubber (Hevea brasiliensis) using different genotypes and tapping systems. Exp Agric 43(2):201–221. CrossRefGoogle Scholar
  53. Hallé F, Martin R Recherches sur l'architecture et la dynamique de croissance dss arbres tropicaux. In: Sixième Conférence Biennale de la W.K.S.A., Abidjan, 8–13 Avril 1968 1968. vol 8 pp 475–503Google Scholar
  54. Hu Z, He Z, Huang Z, Fan S, Yu Z, Wang M, Zhou X, Fang C (2014) Effects of harvest residue management on soil carbon and nitrogen processes in a Chinese fir plantation. For Ecol Manag 326:163–170. CrossRefGoogle Scholar
  55. Hughes AC (2017) Understanding the drivers of Southeast Asian biodiversity loss. Ecosphere 8(1):e01624-n/a. CrossRefGoogle Scholar
  56. Isarangkool Na Ayutthaya S, Do FC, Pannangpetch K, Junjittakarn J, Maeght J-L, Rocheteau A, Cochard H (2011) Water loss regulation in mature Hevea brasiliensis: effects of intermittent drought in the rainy season and hydraulic regulation. Tree Physiol 31(7):751–762. PubMedCrossRefGoogle Scholar
  57. Ishizuka S, Tsuruta H, Murdiyarso D (2002) An intensive field study on CO2, CH4, and N2O emissions from soils at four land-use types in Sumatra, Indonesia. Glob Biogeochem Cycles 16(3):22–21–22-11. CrossRefGoogle Scholar
  58. Jadin P, Snoeck D (1985) The soil diagnosis method to calculate the fertilizer requierements of the cocoa tree. Café Cacao Thé 29(4):267–272Google Scholar
  59. Jessy MD, Prasannakumari P, Abraham J (2013) Carbon and nutrient cycling through fine roots in rubber (Hevea brasiliensis) plantations in India. Exp Agric 49(4):556–573. CrossRefGoogle Scholar
  60. Joseph M, Mathew M, Sethuraj MR, Ranganathan CR (1993) Diagnosis and recomandation integrated system: 1. Formulation of DRIS norms for Hevea brasiliensis. Indian J Nat Rubber Res 6(1):11–116Google Scholar
  61. Juo ASR, Mann A (1996) Chemical dynamics in slash-and-burn agriculture. Agric Ecosyst Environ 58(1):49–61. CrossRefGoogle Scholar
  62. Kalam MA, Amma MK, Punnoose KI, Potty SN (1980) Effect of fertilizer application on growth and leaf nutrient content of some important Hevea clones. Rubber Board Bulletin 16(1):19–30Google Scholar
  63. Karthikakuttyamma M, joseph M, Sasidharam Nair AN (2000) Soils and nutrition. In: CK GPJJ (ed) Natural rubber: agromanagement and crop processing. Rubber Research Institute of India, Kottayam, India, p 648Google Scholar
  64. Karthikakuttyamma M, Suresh PR, Mathew M, Varghese A, Shyamala VK (1994) Relative efficiency of modified urea fertilizers for young rubber plants. Indian J Nat Rubber Res 7(2):120–125Google Scholar
  65. Kennedy SF, Leimona B, Yi Z-F (2017) Making a green rubber stamp: emerging dynamics of natural rubber eco-certification. Int J Biodivers Sci Ecosyst Serv Manag 13(1):100–115. CrossRefGoogle Scholar
  66. Kenney-Lazar M, Wong G, Baral H, Russell AJM (2018) Greening rubber? Political ecologies of plantation sustainability in Laos and Myanmar. Geoforum 92:96–105. CrossRefGoogle Scholar
  67. Kleinman PJA, Bryant RB, Dimentel D (1996) Assessing ecological sustainability of slash-and-burn agriculture through soil fertility indicators. Agron J 88:122–127. CrossRefGoogle Scholar
  68. Krishnakumar AK, Potty SN (1992) Chapitre 11—nutrition of Hevea. In: Sethuraj MRaM, Ninan M (ed) Natural rubber: biology, cultivation and technology, vol 23. Elsevier, Amsterdam, pp 239–262. doi: CrossRefGoogle Scholar
  69. Kurniawan S (2016) Conversion of lowland forests to rubber and oil palm plantations changes nutrient leaching and nutrient retention efficiency in highly weathered soils of Sumatra. Georg-August-Universitӓt Gӧttingen, IndonesiaGoogle Scholar
  70. Laclau P (2004) Dynamique du fonctionnement minéral d'une plantation d'eucalyptus. Effet du reboisement sur un sol de savane du littoral congolais; conséquences pour la gestion des plantations industrielles, INAPG (AgroParisTech)Google Scholar
  71. Lacote R, Gabla OR, Obouayeba S, Eschbach J-M, Rivano F, Dian K, Gohet E (2010) Long-term effect of ethylene stimulation on the yield of rubber trees is linked to latex cell biochemistry. Field Crop Res 115(1):94–98. CrossRefGoogle Scholar
  72. Lacote R, Obouayeba S, Clément-Demange A, Dian K, Gnagne MY, Gohet E (2004) Panel management in rubber (Hevea brasiliensis) tapping and impact on yield, growth, and latex diagnosis. J Rubber Res 7(3):199–217Google Scholar
  73. Langenberger G, Cadisch G, Martin K, Min S, Waibel H (2017) Rubber intercropping: a viable concept for the 21st century? Agrofor Syst 91(3):577–596. CrossRefGoogle Scholar
  74. Li Y, Lan G, Xia Y (2016) Rubber trees demonstrate a clear retranslocation under seasonal drought and cold stresses. Front Plant Sci 7:11. CrossRefGoogle Scholar
  75. Lim TS (1978) Nutrient uptake of clone RRIM 600 in relation to soil influence and fertilizer needs. In: Rubber Research Institute of Malaysia Planters’ Conference, Kuala Lumpur, pp 166–185Google Scholar
  76. Liu C, Jin Y, Liu C, Tang J, Wang Q, Xu M (2018) Phosphorous fractions in soils of rubber-based agroforestry systems: influence of season, management and stand age. Sci Total Environ 616-617:1576–1588. PubMedCrossRefGoogle Scholar
  77. Liu H, Blagodatsky S, Giese M, Liu F, Xu J, Cadisch G (2016) Impact of herbicide application on soil erosion and induced carbon loss in a rubber plantation of Southwest China. CATENA 145:180–192. CrossRefGoogle Scholar
  78. Liu W, Luo Q, Lu H, Wu J, Duan W (2017) The effect of litter layer on controlling surface runoff and erosion in rubber plantations on tropical mountain slopes, SW China. CATENA 149(Part 1):167–175. CrossRefGoogle Scholar
  79. Mariau D (2001) Diseases of tropical tree crops. Science Publishers, Inc., Enfield (NH), USAGoogle Scholar
  80. Martin R, du Plessix CJ (1969) White root rot (Leptoporus lignosus) of rubber in lower Ivory Coast. J Rubber Res Inst Malaya 21(1):96–106Google Scholar
  81. McGroddy M, Silver WL (2000) Variations in belowground carbon storage and soil CO2 flux rates along a wet tropical climate gradient. Biotropica 32(4):614–624. CrossRefGoogle Scholar
  82. Méndez H, Amelia C, Blagodatskiy S, Jintrawet A, Cadisch G (2012) Carbon sequestration of rubber (Hevea brasiliensis) plantations in the Naban River Watershed National Nature Reserve in Xishuangbanna, China. In: Paper presented at the Conference on International Research on Food Security, Natural Resource Management and Rural Development. Kassel-Witzenhausen, GermanyGoogle Scholar
  83. Meti S, Gohain T, Chaudhuri D (2002) Response of Hevea to fertilizers in northern west Bengal. Indian J Nat Rubber Res 15(2):119–128Google Scholar
  84. Michels T, Eschbach J-M, Lacote R, Benneveau A, Papy F (2012) Tapping panel diagnosis, an innovative on-farm decision support system for rubber tree tapping. Agron Sustain Dev 32(3):791–801. CrossRefGoogle Scholar
  85. Millard P, Grelet GA (2010) Nitrogen storage and remobilization by trees: ecophysiological relevance in a changing world. Tree Physiol 30:1083–1095. PubMedCrossRefGoogle Scholar
  86. Millard P, Nielsen GH (1989) The influence of nitrogen supply on the uptake and remobilization of stored N for the seasonal growth of apple trees. Ann Bot 63(3):301–309. CrossRefGoogle Scholar
  87. Millard P, Thomson CM (1989) The effect of the autumn senescence of leaves on the internal cycling of nitrogen for the spring growth of apple trees. J Exp Bot 40:1285–1289. CrossRefGoogle Scholar
  88. Min S, Huang J, Bai J, Waibel H (2017) Adoption of intercropping among smallholder rubber farmers in Xishuangbanna, China. Int J Agric Sustain 15(3):223–237. CrossRefGoogle Scholar
  89. Mokhatar SJ, Daud NW (2011) Performance of Hevea brasiliensis on haplic acrisol soil as affected by different source of fertilizer. Int J Appl Sci Technol 1(1):50–53Google Scholar
  90. Mokhatar SJ, Daud NW, Ishak CF (2012) Response of Hevea brasiliensis (RRIM 2001) planted on an oxisol to different rates of fertilizer application. Malaysian J Soil Sci 16(1):57–69Google Scholar
  91. Murbach MR, Boaretto AE, Muraoka T, ECAd S, de Souza ECA (2003) Nutrient cycling in a RRIM 600 clone rubber plantation. Sci Agric 60(2):353–357. CrossRefGoogle Scholar
  92. Nandris D, Nicole M, Geiger J (1987) Root rot diseases. Plant Dis 71(4):298–306CrossRefGoogle Scholar
  93. Neary DG, Klopatek CC, DeBano LF, Ffolliott PF (1999) Fire effects on belowground sustainability: a review and synthesis. For Ecol Manag 122(1):51–71. CrossRefGoogle Scholar
  94. Nizami S, Yiping Z, Liqing S, Zhao W, Zhang X (2014) Managing carbon sinks in rubber (Hevea brasilensis) plantation by changing rotation length in SW China. PLoS One 9(12):1–17. CrossRefGoogle Scholar
  95. Njukeng JN, Ehabe EE, Nkeng GE, Kratz S, Schick J, Schnug E (2013a) Investigations on the nutritional status of Hevea brasiliensis plantations in the humid forest zone of Cameroon. Part 1: micronutrient status and distribution in soils. J Kult 65(10):369–375. CrossRefGoogle Scholar
  96. Njukeng JN, Ehabe EE, Nkeng GE, Schick J, Kratz S, Schnug E (2013b) Investigations on the nutritional status of Hevea brasiliensis plantations in the humid forest zone of Cameroon. Part 2: establishment of macronutrient norms. J Kult 65(10):376–384. CrossRefGoogle Scholar
  97. Njukeng JN, Ehabe EE, Nkeng GE, Schnug E (2013c) Preliminary diagnosis and recommendation integrated system (DRIS) norms for Hevea brasiliensis grown in the humid forest zone of Cameroon. Int J Plant Soil Sci 2(2):230–243. CrossRefGoogle Scholar
  98. Njukeng JN, Ejolle EE (2014) Analysis and application of leaf chemical concentrations in Hevea brasiliensis nutrition: compositional nutrient diagnosis norms. Int J Adv Res Chem Sci 1(6):29–35Google Scholar
  99. Öborn I, Edwards AC, Witter E, Oenema O, Ivarsson K, Withers PJA, Nilsson SI, Richert Stinzing A (2003) Element balances as a tool for sustainable nutrient management: a critical appraisal of their merits and limitations within an agronomic and environmental context. Eur J Agron 20(1):211–225. CrossRefGoogle Scholar
  100. Obouayeba S, Boko AMCK, Soumahin EF, Elabo AAE, Dea GB, N’guessan BEA, Kouamé C, Zéhi B, Kéli ZJ (2015) Natural rubber-based intercropping systems in côte d'Ivoire: a review of forty years of work. Rubber Sci 28(3):211–226Google Scholar
  101. Omorusi VI (2012) Effects of white root rot disease on Hevea brasiliensis (Muell. Arg.)—challenges and control approach. In: Dhal DNK (ed) Plant Science. InTech. doi:
  102. Paisan L (1996) Intercropping of young rubber. J Sci Technol 3:171–179Google Scholar
  103. Pardon L, Bessou C, Nelson PN, Dubos B, Ollivier J, Marichal R, Caliman J-P, Gabrielle B (2016) Key unknowns in nitrogen budget for oil palm plantations: a review. Agron Sustain Dev 36(1):20. CrossRefGoogle Scholar
  104. Pinto LFG, Bernardes MS, Van Noordwijk M, Pereira AR, Lusiana B, Mulia R (2005) Simulation of agroforestry systems with sugarcane in Piracicaba, Brazil. Agric Syst 86(3):275–292. CrossRefGoogle Scholar
  105. Pollinière JP, Van Brandt H (1964) Bilan des mouvements en éléments minéraux sous cultures d'hévéas au Viet-Nam. RGCP 41(11):1665–1672Google Scholar
  106. Pollinière JP, Van Brandt H (1967) Production en matière sèche et autres caractères végétales de greffes d'hévéa en fonction de leur age. Bois et Forêts des Tropiques (112):39–51Google Scholar
  107. Pradeep KP, Manjappa K (2015) Effect of integrated nutrient management practices on early growth of young rubber (Hevea brasiliensis) plantation. Karnataka J Agric Sci 28(4):567–570Google Scholar
  108. Priyadarshan PM (2011) Plant structure and ecophysiology. In: Biology of Hevea rubber. Springer International Publishing, Cham, pp 21–37. CrossRefGoogle Scholar
  109. Priyadarshan PM, Hoa TTT, Huasun H, de Gonçalves PS (2005) Yielding potential of rubber (Hevea brasiliensis) in sub-optimal environments. J Crop Improv 14(1–2):221–247. CrossRefGoogle Scholar
  110. Punnoose KI, Laksmanan R (2000) Nursery and field establishment. In: GPJaJ CK (ed) Natural rubber: agromanagement and crop processing. Rubber Research Institute of India, Kottayam, India, p 648Google Scholar
  111. Pushpadas MV, Ahmed M (1980) Nutritional requirements and manurial recommendations. In: Pillai R (ed) Hand book of natural rubber production in India. Rubber Research Institute of India, Kottayam, pp 154–184Google Scholar
  112. Pushparajah E (1973) Recent developments in the nutrition of Hevea in west Malaysia. J Rubber Res Inst Sri Lanka 50(1):68–83Google Scholar
  113. Pushparajah E (1977) Nutrition and fertilizer use in Hevea and associated covers in peninsular Malaysia: a review. J Rubber Res Inst Sri Lanka 54(1):270–283Google Scholar
  114. Pushparajah E (1994) Leaf analysis and soil testing for plantation tree crops. In: Paper presented at the International Workshop: leaf diagnosis and soil testing as a guide to crop fertilizationGoogle Scholar
  115. Putthacharoen S, Howler RH, Jantawat S, Vichukit V (1998) Nutrient uptake and soil erosion losses in cassava and six other crops in a Pasmment in eastern Thailand. Field Crop Res 57(1):113–126. CrossRefGoogle Scholar
  116. Ranger J, Turpault M-P (1999) Input–output nutrient budgets as a diagnostic tool for sustainable forest management. For Ecol Manag 122(1):139–154. CrossRefGoogle Scholar
  117. Rao PS, Jayarathnam K, Sethuraj MR (1993) An index to assess areas hydrothermally suitable for rubber cultivation. Indian J Nat Rubber Res 6(1&2):80–91Google Scholar
  118. Razman MZ, Wan Daud WMN, Sulaiman Z (2016) Effect of mulching and fertilizer rates on the growth of RRIM 3001. Int J Agric For Plant 4:33–37Google Scholar
  119. Rocha JHT, Gonçalves JLM, Gava JL, Godinho TO, Melo EASC, Bazani JH, Hubner A, Arthur Junior JC, Wichert MP (2016) Forest residue maintenance increased the wood productivity of a Eucalyptus plantation over two short rotations. For Ecol Manag 379:1–10. CrossRefGoogle Scholar
  120. Rodenburg J, Stein A, van Noordwijk M, Ketterings QM (2003) Spatial variability of soil pH and phosphorus in relation to soil run-off following slash-and-burn land clearing in Sumatra, Indonesia. Soil Tillage Res 71(1):1–14. CrossRefGoogle Scholar
  121. Rodrigo VHL, Stirling CM, Silva TUK, Pathirana PD (2005a) The growth and yield of rubber at maturity is improved by intercropping with banana during the early stage of rubber cultivation. Field Crop Res 91(1):23–33. CrossRefGoogle Scholar
  122. Rodrigo VHL, Stirling CM, Teklehaimanot Z, Nugawela A (1997) The effect of planting density on growth and development of component crops in rubber/banana intercropping systems. Field Crop Res 52(1):95–108. CrossRefGoogle Scholar
  123. Rodrigo VHL, Stirling CM, Teklehaimanot Z, Nugawela A (2001) Intercropping with banana to improve fractional interception and radiation-use efficiency of immature rubber plantations. Field Crop Res 69(3):237–249. CrossRefGoogle Scholar
  124. Rodrigo VHL, Stirling CM, Teklehaimanot Z, Samarasekera RK, Pathirana PD (2005b) Interplanting banana at high densities with immature rubber crop for improved water use. Agron Sustain Dev 25(1):45–54. CrossRefGoogle Scholar
  125. Romyen A, Sausue P, Charenjiratragul S (2018) Investigation of rubber-based intercropping system in southern Thailand. Kasetsart J Social Sci 39(1):135.142–135.142. CrossRefGoogle Scholar
  126. RRIT (2011) Natural rubber technical information. Rubber Research Institute, Department of Agriculture, Ministry of Agriculture and Cooperative, ThailandGoogle Scholar
  127. Salisu M, Daud N, Ahmad I (2013) Influence of fertilizer rates and soil series on growth performance of natural rubber (‘Hevea brasiliensis’) latex timber clones. Aust J Crop Sci 7(13):1998Google Scholar
  128. Salisu MA, Daud NW (2016) Effect of fertilizer rates and soil series on root morphological traits and root: shoot ratio of immature natural rubber (Hevea brasiliensis). Int J Sci Eng Res 7(9):1373–1378Google Scholar
  129. Samarappuli L (1996) The contribution of rubber plantations towards a better environment. Bull Rubber Res Inst Sri Lanka 257(1):45–54Google Scholar
  130. Schroth G, Salazar E, Da Silva JP (2001) Soil nitrogen mineralization under tree crops and a legume cover crop in multi-strata agroforestry in central Amazonia: spatial and temporal patterns. Exp Agric 37(1):253–267. CrossRefGoogle Scholar
  131. Sethuraj MR, Mathew NM (1992) Nutrition of Hevea. In: Natural rubber: biology, cultivation and technology, vol vol 23. Elsevier, Amsterdam. CrossRefGoogle Scholar
  132. Shigematsu A, Mizoue N, Kajisa T, Yoshida S (2011) Importance of rubberwood in wood export of Malaysia and Thailand. New For 41(2):179–189. CrossRefGoogle Scholar
  133. Shorrocks VM (1965a) Mineral nutrition, growth and nutrient cycle of Hevea brasiliensis. II. Nutrient cycle and fertiliser requirements. J Rubber Res Inst Malaya 19(1):48–61Google Scholar
  134. Shorrocks VM (1965b) Mineral nutrition, growth and nutrient cycle of Hevea brasiliensis. IV. Clonal variation in girth with reference to shoot dry weight and nutrient requirements. J Rubber Res Inst Malaya 19(1):93–97Google Scholar
  135. Shorrocks VM (1965c) Mineral nutrition, growth and nutrient cycle of Hevea brasiliensis. I. Growth and nutrient content. J Rubber Res Inst Malaya 19(1):32–47Google Scholar
  136. Simorangkir D, Sardjono MA (2006) Implications of forest utilization, conversion policy and tenure dynamics on resource management and poverty reduction. Understanding For Tenure in South and Southeast Asia 14:197Google Scholar
  137. Snoeck D, Jadin P (1990) Mode de calcul pour l'étude de la fertilisation minérale des caféiers basée sur l'analyse de sol. Café Cacao Thé 34(1):3–16Google Scholar
  138. Snoeck D, Lacote R, Kéli J, Doumbia A, Chapuset T, Jagoret P, Gohet É (2013) Association of Hevea with other tree crops can be more profitable than Hevea monocrop during first 12 years. Ind Crop Prod 43:578–586. CrossRefGoogle Scholar
  139. Sojka RE, Langdale GW, Karlen DL (1984) Vegetative techniques for reducing water erosion of crop land in the Southeastern United States. Adv Agron 37:155–181. CrossRefGoogle Scholar
  140. Soong NK (1976) Feeder root development of Hevea brasiliensis in relation to clones and environment. J Rubber Res Inst Malaysia 24(5):283–298Google Scholar
  141. Spiertz H (2010) Food production, crops and sustainability: restoring confidence in science and technology. Curr Opin Environ Sustain 2(5):439–443. CrossRefGoogle Scholar
  142. Stevenson FJ (1965) Origin and distribution of nitrogen in soil. In: Clark WVBaFE (ed) Nitrogen in agricultural soils, vol 10. Agron. Monogr. 22. ASA, CSSA, SSSA, Madison, WI., pp 1-42. doi:
  143. Suchartgul S, Maneepong S, Issarakrisila M (2012) Establishment of standard values for nutritional diagnosis in soil and leaves of immature rubber tree. Rubber Thai J 1(1):19–31Google Scholar
  144. Thaler P, Pagès L (1996a) Periodicity in the development of the root system of young rubber trees (Hevea brasiliensis Müell. Arg.): relationship with shoot development. Plant Cell Environ 19(1):56–64. CrossRefGoogle Scholar
  145. Thaler P, Pagès L (1996b) Root apical diameter and root elongation rate of rubber seedlings (Hevea brasiliensis) show parallel responses to photoassimilate availability. Physiol Plant 97(2):365–371. CrossRefGoogle Scholar
  146. Thitithanakul S, Jaikrajang B, Ma N, Sukkawong S (2017) Determination of nitrogen and phosphorus requirement of the RRIM 600 and RRIT 251 young rubber trees. Walailak J Sci Technol 14(7):571–580. Scholar
  147. Thomson-Reuters (2018) WEB OF SCIENCE™ Thomson Reuters—web of knowledge. Clarivate. Accessed 15 Sep 2018
  148. Tiessen H, Sampaio EVSB, Salcedo IH (2001) Organic matter turnover and management in low input agriculture of NE Brazil. Nutr Cycl Agroecosyst 61(1):99–103. CrossRefGoogle Scholar
  149. Timkhum P, Maneepong S, Issarakrisila M, Sangsing K (2013) Nutrient assessment with omission pot trials for management of rubber growing soil. J Agric Sci 5(10):10–19. CrossRefGoogle Scholar
  150. Trebs I, Lara LL, Zeri LMM, Gatti LV, Artaxo P, Dlugi R, Slanina J, Andreae MO, Meixner FX (2006) Dry and wet deposition of inorganic nitrogen compounds to a tropical pasture site (Rondônia, Brazil). Atmos Chem Phys 6(2):447–469. CrossRefGoogle Scholar
  151. Van Noordwijk M, Lusiana B (1999) WaNuLCAS, a model of water, nutrient and light capture in agroforestry systems. In: Auclair D, Dupraz C (eds) Agroforestry for sustainable land-use fundamental research and modelling with emphasis on temperate and Mediterranean applications: selected papers from a workshop held in Montpellier, France, 23–29 June 1997. Springer Netherlands, Dordrecht, pp 217–242. CrossRefGoogle Scholar
  152. Vaysse L, Bonfils F, Sainte-Beuve J, Cartault M (2012) Natural rubber. In: Matyjaszewski KaM M (ed) Polymer science: a comprehensive reference, vol 10. Elsevier BV, Amsterdam, pp 281–293. CrossRefGoogle Scholar
  153. Versini A, Mareschal L, Matsoumbou T, Zeller B, Ranger J, Laclau J-P (2014) Effects of litter manipulation in a tropical eucalyptus plantation on leaching of mineral nutrients, dissolved organic nitrogen and dissolved organic carbon. Geoderma 232-234:426–436. CrossRefGoogle Scholar
  154. Warren-Thomas E, Dolman PM, Edwards DP (2015) Increasing demand for natural rubber necessitates a robust sustainability initiative to mitigate impacts on tropical biodiversity. Conserv Lett 8(4):230–241. CrossRefGoogle Scholar
  155. Watson GA (1989) Nutrition. In: Webster CCaB WJ (ed) Rubber, vol 604. Longman Scientific and Technical, EnglandGoogle Scholar
  156. Watson GA, Tsoy CT, Weng WP (1962) Loss of ammonia by volatilisation from surface dressings of urea in Hevea cultivation. Malaysian Rubber Board 17(3):77–90Google Scholar
  157. Watson GA, Weng WP, Narayanan R (1964a) Effect of cover plants on soil nutrient status and on growth of Hevea. III. A comparison of leguminous creepers with grasses and Mikania cordata. J Rubber Res Inst Malaya 18(2):80–95Google Scholar
  158. Watson GA, Weng WP, Narayanan R (1964b) Effects of cover plants on soil nutrient status and on growth of Hevea. V. Loss of nitrate-nitrogen and of cations under bare soil conditions. a progress report on results from a small-scale trial. J Rubber Res Inst Malaya 18(4):161–174Google Scholar
  159. Webster CC, Baulkwill WJ (1989) Rubber. Longman Scientific and Technical, EnglandGoogle Scholar
  160. Weerasuriya SM, Yogaratnam N (1988) Effect of potassium and magnesium on growth of young Hevea brasiliensis. J Rubb Res Instit Sri Lanka 17–31.Google Scholar
  161. Wu W, Ma B (2015) Integrated nutrient management (INM) for sustaining crop productivity and reducing environmental impact: a review. Sci Total Environ 512:415–427. PubMedCrossRefGoogle Scholar
  162. Yahya AK (2007) Estimating growth (Girth), yield and above-ground biomass of Hevea brasiliensis: validation of the WaNuLCAS model. J Rubber Res 10(3):183–192Google Scholar
  163. Yew FK (2001) Impact of zero burning on biomass and nutrient turnover in rubber replanting. Malaysian J Soil Sci 5(1):19–26Google Scholar
  164. Yogaratnam N, Silva FPW, Weerasuriya SM (1984) Recent developments in the nutrition of Hevea in Sri Lanka. In: Proceedings of the International Rubber Conference, Colombo, Sri Lanka, pp 207–247Google Scholar
  165. Zahidin RM, Wan Noordin WD, Zulkefly S (2017) The effect of soil series and fertilizer rates on the growth on RRIM 3001. J Rubber Res 20(1):43–57Google Scholar
  166. Zhang H, Zhang G-L, Zhao Y-G, Zhao W-J, Qi Z-P (2007) Chemical degradation of a Ferralsol (Oxisol) under intensive rubber (Hevea brasiliensis) farming in tropical China. Soil Tillage Res 93(1):109–116. CrossRefGoogle Scholar
  167. Zhang JL, Zhang SB, Chen YJ, Zhang YP, Poorter L (2015) Nutrient resorption is a ssociated with leaf vein density and growth performance of dipterocarp tree species. J Ecol 103(1):541–549. CrossRefGoogle Scholar
  168. Zhou W-J, Ji H-l, Zhu J, Zhang Y-P, Sha L-Q, Liu Y-T, Zhang X, Zhao W, Dong Y-X, Bai X-L, Lin Y-X, Zhang J-H, Zheng X-H (2016) The effects of nitrogen fertilization on N2O emissions from a rubber plantation. Sci Rep 6:28230. PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Université Clermont Auvergne, INRA, PIAFClermont-FerrandFrance
  2. 2.UPR 34 Performance of Tree Crop-Based Systems, CIRADMontpellierFrance
  3. 3.UMR Eco&Sols, Univ. Montpellier, CIRAD, INRA, IRDMontpellierFrance

Personalised recommendations