Advertisement

Grapevine abiotic stress assessment and search for sustainable adaptation strategies in Mediterranean-like climates. A review

  • Sara Bernardo
  • Lia-Tânia Dinis
  • Nelson Machado
  • José Moutinho-PereiraEmail author
Review Article

Abstract

Foreseen climate change points to shifts in agricultural production patterns worldwide, which may impact ecosystems directly, as well as the economic and cultural contexts of the wine industry. Moreover, the combined effects of environmental threats (light, temperature, and water relations) at different scales are expected to impair natural grapevine mechanisms, decreasing yield and the quality of grapes. Hence, the interaction between several factors, such as climate, terroir features, grapevine stress responses, site-specific spatial-temporal variability, and the management practices applied, which represents and effective challenge for sustainable Mediterranean viticulture, allowed researchers to develop adaptive strategies to cope with environmental stresses. Here, we review the effects of abiotic stresses on Mediterranean-like climate viticulture and the impacts of summer stress on grapevine growth, yield, and quality potential, as well as the subsequent plant responses and the available adaptation strategies for winegrowers and researchers. Our main findings are as follows: (1) environmental stresses can trigger dynamic responses in grapevines, comprising photosynthesis, phenology, hormonal balance, berry composition, and the antioxidant machinery; (2) field research methodologies, laboratory techniques, and precision viticulture are essential tools to evaluate grapevine performance and the potential quality for wine production; and (3) advances in the existing adaptation strategies are vital to maintain sustainability and regional wine identity in a changing climate. Also, these topics suggest that rational and focused management of grapevines may enlighten grapevine summer stress responses and improve the resilience of agro-ecosystems under harsh conditions. Despite the challenge of developing different strategic responses, winegrowers should clearly define their objectives, so applied research can provide rational technical support for the decision making process towards sustainable viticulture.

Keywords

Climate change Mediterranean climate Growth Yield Berry quality potential Resilience 

Notes

Acknowledgments

This work is supported by the European Investment Funds by FEDER/COMPETE/POCI–Operational Competitiveness and Internationalization Programme, under Project POCI-01-0145-FEDER-006958, National Funds by FCT - Portuguese Foundation for Science and Technology, under the project UID/AGR/04033/2013, and by IC&DT INTERACT project – “Integrated Research in Environment, AgroChain and Technology,” no. NORTE-01-0145-FEDER-000017 co-financed by the European Regional Development Fund (ERDF) through NORTE 2020. Sara Bernardo acknowledges the financial support provided by the FCT-Portuguese Foundation for Science and Technology (PD/BD/128273/2017), under the Doctoral Programme “Agricultural Production Chains – from fork to farm.” The postdoctoral fellowship awarded to L.-T. Dinis (SFRH/BPD/84676/2012) is also appreciated. Machado kindly acknowledges the Postdoctoral research grant BDP/UTAD/Innovine&Wine/959/2016 from the Project: INNOVINE&WINE–Plataforma de inovação da vinha e do vinho, n.° da operação NORTE-01-0145-FEDER-000038.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abdel-Salam MM (2016a) Effect of foliar application with humic acid and two antioxidants on ruby seedless grapevine. Middle East J Agric Res 5(2):123–131 ISSN 2077-4605Google Scholar
  2. Abdel-Salam MM (2016b) Effect of foliar application of salicylic acid and micronutrients on the berries quality of “Bez El Naka” local grape cultivar. Middle East J Appl Sci 6(1):178–188 ISSN 2077-4613Google Scholar
  3. Acevedo-Opazo C, Tisseyre B, Ojeda H, Ortega-Farias S, Guillaume S (2008) Is it possible to assess the spatial variability of vine water status? J Int Sci Vigne Vin 42(4):203.  https://doi.org/10.20870/oeno-one.2008.42.4.811 CrossRefGoogle Scholar
  4. Agati G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76.  https://doi.org/10.1016/j.plantsci.2012.07.014 PubMedCrossRefGoogle Scholar
  5. Akinnagbe OM, Irohibe IJ (2014) Agricultural adaptation strategies to climate change impacts in Africa: a review. Bangladesh J Agric Res 39(3):407–418CrossRefGoogle Scholar
  6. Arias-Gil M, Garde-Cerdán T, Ancín-Azpilicueta C (2007) Influence of addition of ammonium and different amino acid concentrations on nitrogen metabolism in spontaneous must fermentation. Food Chem 103(4):1312–1318.  https://doi.org/10.1016/j.foodchem.2006.10.037 CrossRefGoogle Scholar
  7. Barbeau C, Barbeau G, Joannon A (2014) Analyzing the sensitivity of viticultural practices to weather variability in a climate change perspective: an application to workable-day modelling. J Int Sci Vigne Vin 48(2):141.  https://doi.org/10.20870/oeno-one.2014.48.2.1563 CrossRefGoogle Scholar
  8. Barnuud NN, Zerihun A, Gibberd M, Bates B (2013) Berry composition and climate: responses and empirical models. Int J Biometeorol 58(6):1207–1223.  https://doi.org/10.1007/s00484-013-0715-2 PubMedCentralCrossRefGoogle Scholar
  9. Battaglini A, Barbeau G, Bindi M, Badeck FW (2008) European winegrowers’ perceptions of climate change impact and options for adaptation. Reg Environ Chang 9(2):61–73.  https://doi.org/10.1007/s10113-008-0053-9 CrossRefGoogle Scholar
  10. Bell S-J, Henschke PA (2005) Implications of nitrogen nutrition for grapes, fermentation and wine. Aust J Grape Wine Res 11(3):242–295.  https://doi.org/10.1111/j.1755-0238.2005.tb00028.x CrossRefGoogle Scholar
  11. Bell S, Robson A (1999) Effect of nitrogen fertilization and growth, canopy density, and yield of Vitis vinifera L. cv. Cabernet Sauvignon. Am J Enol Vitic 50(3):351–358Google Scholar
  12. Bernardo S, Dinis LT, Luzio A, Pinto G, Meijón M, Valledor L, Conde A, Gerós H, Correia CM, Moutinho-Pereira J (2017) Kaolin particle film application lowers oxidative damage and DNA methylation on grapevine (Vitis vinifera L.). Environ Exp Bot 139:39–47.  https://doi.org/10.1016/j.envexpbot.2017.04.002 CrossRefGoogle Scholar
  13. Bertamini M (2003) Photoinhibition of photosynthesis in mature and young leaves of grapevine (Vitis vinifera L.). Plant Sci 164(4):635–644.  https://doi.org/10.1016/s0168-9452(03)00018-9 CrossRefGoogle Scholar
  14. Bertamini M, Zulini L, Muthuchelian K, Nedunchezhian N (2006) Effect of water deficit on photosynthetic and other physiological responses in grapevine (Vitis vinifera L. cv. Riesling) plants. Photosynthetica 44(1):151–154.  https://doi.org/10.1007/s11099-005-0173-0 CrossRefGoogle Scholar
  15. Bienert GP, Møller ALB, Kristiansen KA, Schulz A, Møller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282(2):1183–1192.  https://doi.org/10.1074/jbc.M603761200 PubMedCrossRefGoogle Scholar
  16. Blazquez MA, Jung CJ, Hur YY, Yu H, Noh J, Park K, Lee H (2014) Gibberellin application at pre-bloom in grapevines Down-regulates the expressions of VvIAA9 and VvARF7, negative regulators of fruit set initiation, during parthenocarpic fruit development. PLoS One 9(4):e95634.  https://doi.org/10.1371/journal.pone.0095634 CrossRefGoogle Scholar
  17. Boari F, Donadio A, Schiattone MI, Cantore V (2015) Particle film technology: a supplemental tool to save water. Agric Water Mgmt 147:154–162.  https://doi.org/10.1016/j.agwat.2014.07.014 CrossRefGoogle Scholar
  18. Böttcher C, Burbidge CA, Boss PK, Davies C (2013) Interactions between ethylene and auxin are crucial to the control of grape (Vitis vinifera L.) berry ripening. BMC Plant Biol 13(1):222.  https://doi.org/10.1186/1471-2229-13-222 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Brunori E, Farina R, Biasi R (2016) Sustainable viticulture: the carbon-sink function of the vineyard agro-ecosystem. Agric Ecosyst Environ 223:10–21.  https://doi.org/10.1016/j.agee.2016.02.012 CrossRefGoogle Scholar
  20. Buschmann C, Nagel E (1993) In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation. Int J Remote Sens 14(4):711–722.  https://doi.org/10.1080/01431169308904370 CrossRefGoogle Scholar
  21. Buttrose MS, Hale CR (1971) Effects of temperature on accumulation of starch or lipid in chloroplasts of grapevine. Planta 101(2):166–170.  https://doi.org/10.1007/bf00387627 PubMedCrossRefGoogle Scholar
  22. Cakmak I (2005) The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci 168(4):521–530.  https://doi.org/10.1002/jpln.200420485 CrossRefGoogle Scholar
  23. Calonnec A, Zito S, Bois B (2017) Climate vs grapevine pests and diseases worldwide: the first results of a global survey. OENO One 51(2):133–139.  https://doi.org/10.20870/oeno-one.2017.51.2.1780 CrossRefGoogle Scholar
  24. Camejo D, Jiménez A, Alarcón JJ, Torres W, Gómez JM, Sevilla F (2006) Changes in photosynthetic parameters and antioxidant activities following heat-shock treatment in tomato plants. Funct Plant Biol 33(2):177.  https://doi.org/10.1071/fp05067 CrossRefGoogle Scholar
  25. Castellarin SD, Matthews MA, Di Gaspero G, Gambetta GA (2007) Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta 227(1):101–112.  https://doi.org/10.1007/s00425-007-0598-8 PubMedCrossRefGoogle Scholar
  26. Chaves MM, Zarrouk O, Francisco R, Costa JM, Santos T, Regalado AP, Rodrigues ML, Lopes CM (2010) Grapevine under deficit irrigation: hints from physiological and molecular data. Ann Bot 105(5):661–676.  https://doi.org/10.1093/aob/mcq030 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Choné X, Van Leeuwen C, Chery P, Ribereau-Gayon P (2001a) Terroir influence on water status and nitrogen status of non irrigated Cabernet-Sauvignon (Vitis vinifera L.): vegetative development, must and wine composition. S Afr J Anol Vitic 22(1):8–15.  https://doi.org/10.21548/22-1-2159 CrossRefGoogle Scholar
  28. Choné X, Van Leeuwen C, Dubourdieu D, Gaudillere JP (2001b) Stem water potential is a sensitive indicator of grapevine water status. Ann Bot 87(4):477–483.  https://doi.org/10.1006/anbo.2000.1361 CrossRefGoogle Scholar
  29. Choné X, Lavigne-Cruège V, Tominaga T, Van Leeuwen C, Castagnède C, Saucier C, Dubourdieu D (2006) Effect of vine nitrogen status on grape aromatic potential: flavor precursors (S-cysteine conjugates), glutathione and phenolic content in Vitis vinifera L. Cv Sauvignon blanc grape juice. J Int Sci Vigne Vin 40(1):1.  https://doi.org/10.20870/oeno-one.2006.40.1.880 CrossRefGoogle Scholar
  30. Cohen SD, Tarara JM, Kennedy JA (2008) Assessing the impact of temperature on grape phenolic metabolism. Anal Chim Acta 621(1):57–67.  https://doi.org/10.1016/j.aca.2007.11.029 PubMedCrossRefGoogle Scholar
  31. Conde C, Silva P, Fontes N, Dias ACP, Tavares R, Sousa M, Agasse A, Delrot S, Gerós H (2007) Biochemical changes throughout grape berry development and fruit and wine quality. Food 1(1):1–22Google Scholar
  32. Conde A, Chaves MM, Geros H (2011) Membrane transport, sensing and signaling in plant adaptation to environmental stress. Plant Cell Physiol 52(9):1583–1602.  https://doi.org/10.1093/pcp/pcr107 PubMedCrossRefGoogle Scholar
  33. Conde A, Pimentel D, Neves A, Dinis LT, Bernardo S, Correia CM, Gerós H, Moutinho-Pereira J (2016) Kaolin foliar application has a stimulatory effect on phenylpropanoid and flavonoid pathways in grape berries. Front Plant Sci 7.  https://doi.org/10.3389/fpls.2016.01150
  34. Conde A, Neves A, Breia R, Pimentel D, Dinis LT, Bernardo S, Correia CM, Cunha A, Gerós H, Moutinho-Pereira J (2018) Kaolin particle film application stimulates photoassimilate synthesis and modifies the primary metabolome of grape leaves. J Plant Physiol 223:47–56.  https://doi.org/10.1016/j.jplph.2018.02.004 PubMedCrossRefGoogle Scholar
  35. Coniberti A, Ferrari V, Dellacassa E, Boido E, Carrau F, Gepp V, Disegna E (2013) Kaolin over sun-exposed fruit affects berry temperature, must composition and wine sensory attributes of Sauvignon blanc. Eur J Agron 50:75–81.  https://doi.org/10.1016/j.eja.2013.06.001 CrossRefGoogle Scholar
  36. Coombe BG (1987) Influence of temperature on composition and quality of grapes. Acta Hortic (206):23–36.  https://doi.org/10.17660/ActaHortic.1987.206.1
  37. Cramer GR (2010) Abiotic stress and plant responses from the whole vine to the genes. Aust J Grape Wine Res 16:86–93.  https://doi.org/10.1111/j.1755-0238.2009.00058.x CrossRefGoogle Scholar
  38. Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11(1):163.  https://doi.org/10.1186/1471-2229-11-163 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Crippen DD, Morrison J (1986) The effects of sun exposure on the compositional development of Cabernet Sauvignon berries. Am J Enol Vitic 37(4):235–242Google Scholar
  40. Dai ZW, Ollat N, Gomès E, Decroocq S, Tandonnet JP, Bordenave L, Pieri P, Hilbert G, Kappel C, van Leeuwen C, Vivin P, Delrot S (2011) Ecophysiological, genetic, and molecular causes of variation in grape berry weight and composition: a review. Am J Enol Vitic 62(4):413–425.  https://doi.org/10.5344/ajev.2011.10116 CrossRefGoogle Scholar
  41. Darriet P, Thibon C, Rauhut D, Schüttler A, Allamy L, Pons A (2017) What is the expected impact of climate change on wine aroma compounds and their precursors in grape? OENO One 51(2):141–146.  https://doi.org/10.20870/oeno-one.2017.51.2.1868 CrossRefGoogle Scholar
  42. Daux V, Garcia de Cortazar-Atauri I, Yiou P, Chuine I, Garnier E, Le Roy Ladurie E, Mestre O, Tardaguila J (2012) An open-access database of grape harvest dates for climate research: data description and quality assessment. Clim Past 8(5):1403–1418.  https://doi.org/10.5194/cp-8-1403-2012 CrossRefGoogle Scholar
  43. Degaris KA, Walker RR, Loveys BR, Tyerman SD (2017) Exogenous application of abscisic acid to root systems of grapevines with or without salinity influences water relations and ion allocation. Aust J Grape Wine Res 23(1):66–76.  https://doi.org/10.1111/ajgw.12264 CrossRefGoogle Scholar
  44. Delgado R, Martín P, delÁlamo M, González MR (2004) Changes in the phenolic composition of grape berries during ripening in relation to vineyard nitrogen and potassium fertilisation rates. J Sci Food Agric 84(7):623–630.  https://doi.org/10.1002/jsfa.1685 CrossRefGoogle Scholar
  45. Deytieux-Belleau C, Gagne S, L'Hyvernay A, Donèche B, Geny L (2007) Possible roles of both absicisic acid and indol-acetic acid in controlling grape berry ripening process. J Int Sci Vigne Vin 41(3):141–148Google Scholar
  46. Dinis LT, Correia CM, Ferreira HF, Gonçalves B, Gonçalves I, Coutinho JF, Ferreira MI, Malheiro AC, Moutinho-Pereira J (2014) Physiological and biochemical responses of Semillon and Muscat Blanc à Petits Grains winegrapes grown under Mediterranean climate. Sci Hortic 175:128–138.  https://doi.org/10.1016/j.scienta.2014.06.007 CrossRefGoogle Scholar
  47. Dinis LT, Ferreira H, Pinto G, Bernardo S, Correia CM, Moutinho-Pereira J (2015) Kaolin-based, foliar reflective film protects photosystem II structure and function in grapevine leaves exposed to heat and high solar radiation. Photosynthetica 54(1):47–55.  https://doi.org/10.1007/s11099-015-0156-8 CrossRefGoogle Scholar
  48. Dinis LT, Bernardo S, Conde A, Pimentel D, Ferreira H, Félix L, Gerós H, Correia CM, Moutinho-Pereira J (2016) Kaolin exogenous application boosts antioxidant capacity and phenolic content in berries and leaves of grapevine under summer stress. J Plant Physiol 191:45–53.  https://doi.org/10.1016/j.jplph.2015.12.005 PubMedCrossRefGoogle Scholar
  49. Dinis LT, Malheiro AC, Luzio A, Fraga H, Ferreira H, Gonçalves I, Pinto G, Correia CM, Moutinho-Pereira J (2017) Improvement of grapevine physiology and yield under summer stress by kaolin-foliar application: water relations, photosynthesis and oxidative damage. Photosynthetica 56:641–651.  https://doi.org/10.1007/s11099-017-0714-3 CrossRefGoogle Scholar
  50. Dinis LT, Bernardo S, Luzio A, Pinto G, Meijón M, Pintó-Marijuan M, Cotado A, Correia C, Moutinho-Pereira J (2018) Kaolin modulates ABA and IAA dynamics and physiology of grapevine under Mediterranean summer stress. J Plant Physiol 220:181–192.  https://doi.org/10.1016/j.jplph.2017.11.007 PubMedCrossRefGoogle Scholar
  51. Dokoozlian NK (1996) Influence of light on grape berry growth and composition varies during fruit development. J Am Soc Hortic Sci 121(5):869–874Google Scholar
  52. Dokoozlian NK (2000) Grape berry growth and development. In: Christensen LP (ed) Raisin production manual. Oakland, California, p 30–37Google Scholar
  53. Drenjančević M, Jukić V, Zmaić K, Kujundžić T, Rastija V (2017) Effects of early leaf removal on grape yield, chemical characteristics, and antioxidant activity of grape variety Cabernet Sauvignon and wine from eastern Croatia. Acta Agric Scand Sect B Soil Plant Sci 67(8):705–711.  https://doi.org/10.1080/09064710.2017.1332238 CrossRefGoogle Scholar
  54. Duchêne E (2016) How can grapevine genetics contribute to the adaptation to climate change? OENO One 50(3):113–124CrossRefGoogle Scholar
  55. Duchêne E, Schneider C (2005) Grapevine and climatic changes: a glance at the situation in Alsace. Agron Sustain Dev 25(1):93–99.  https://doi.org/10.1051/agro:2004057 CrossRefGoogle Scholar
  56. El-kenawy M (2017) Effect of chitosan, salicylic acid and fulvic acid on vegetative growth, yield and fruit quality of Thompson seedless grapevines. Egypt J Hortic 44(1):45–59.  https://doi.org/10.21608/ejoh.2017.1104.1007 CrossRefGoogle Scholar
  57. Ferrandino A, Lovisolo C (2014) Abiotic stress effects on grapevine (Vitis vinifera L.): focus on abscisic acid-mediated consequences on secondary metabolism and berry quality. Environ Exp Bot 103:138–147.  https://doi.org/10.1016/j.envexpbot.2013.10.012 CrossRefGoogle Scholar
  58. Ferreiro-Armán M, Da Costa JP, Homayouni S, Martín-Herrero J (2006) Hyperspectral image analysis for precision viticulture. 4142:730–741.  https://doi.org/10.1007/11867661_66
  59. Fila G, Gardiman M, Belvini P, Meggio F, Pitacco A (2014) A comparison of different modelling solutions for studying grapevine phenology under present and future climate scenarios. Agric For Meteorol 195-196:192–205.  https://doi.org/10.1016/j.agrformet.2014.05.011 CrossRefGoogle Scholar
  60. Flexas J, Escalona JM, Medrano H (1998) Down-regulation of photosynthesis by drought under field conditions in grapevine leaves. Aust J Plant Physiol 25(8):893.  https://doi.org/10.1071/pp98054 CrossRefGoogle Scholar
  61. Fournier-Level A, Le Cunff L, Gomez C, Doligez A, Ageorges A, Roux C, Bertrand Y, Souquet JM, Cheynier V, This P (2009) Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp. sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study. Genetics 183(3):1127–1139.  https://doi.org/10.1534/genetics.109.103929 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Foyer C, Leegood R, Walker D (1982) What limits photosynthesis? Nature 298(5872):326–326.  https://doi.org/10.1038/298326a0 CrossRefGoogle Scholar
  63. Fraga H, Malheiro AC, Moutinho-Pereira J, Santos JA (2012) An overview of climate change impacts on European viticulture. Food Energy Sec 1(2):94–110.  https://doi.org/10.1002/fes3.14 CrossRefGoogle Scholar
  64. Fraga H, Malheiro AC, Moutinho-Pereira J, Santos JA (2013) Future scenarios for viticultural zoning in Europe: ensemble projections and uncertainties. Int J Biometeorol 57(6):909–925.  https://doi.org/10.1007/s00484-012-0617-8 PubMedCrossRefGoogle Scholar
  65. Fraga H, Santos JA, Malheiro AC, Oliveira AA, Moutinho-Pereira J, Jones GV (2016) Climatic suitability of Portuguese grapevine varieties and climate change adaptation. Int J Climatol 36(1):1–12.  https://doi.org/10.1002/joc.4325 CrossRefGoogle Scholar
  66. Galmes J, Ribas-Carbo M, Medrano H, Flexas J (2010) Rubisco activity in Mediterranean species is regulated by the chloroplastic CO2 concentration under water stress. J Exp Bot 62(2):653–665.  https://doi.org/10.1093/jxb/erq303 PubMedCrossRefGoogle Scholar
  67. Gambetta GA (2016) Water stress and grape physiology in the context of global climate change. J Wine Econ 11(01):168–180.  https://doi.org/10.1017/jwe.2015.16 CrossRefGoogle Scholar
  68. Gambetta GA, Matthews MA, Shaghasi TH, McElrone AJ, Castellarin SD (2010) Sugar and abscisic acid signaling orthologs are activated at the onset of ripening in grape. Planta 232(1):219–234.  https://doi.org/10.1007/s00425-010-1165-2 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Gamon JA, Pearcy RW (1989) Leaf movement, stress avoidance and photosynthesis in Vitis californica. Oecologia 79(4):475–481.  https://doi.org/10.1007/bf00378664 PubMedCrossRefGoogle Scholar
  70. García de Cortázar-Atauri I, Duchêne E, Destrac-Irvine A, Barbeau G, De Rességuier L, Lacombe T, Parker AK, Saurin N, Van Leeuwen C (2017) Grapevine phenology in France: from past observations to future evolutions in the context of climate change. OENO One 51(2):115–126.  https://doi.org/10.20870/oeno-one.2017.51.2.1622 CrossRefGoogle Scholar
  71. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Chang 63(2–3):90–104.  https://doi.org/10.1016/j.gloplacha.2007.09.005 CrossRefGoogle Scholar
  72. Glenn DM (2012) The mechanisms of plant stress mitigation by kaolin-based particle films and applications in horticultural and agricultural crops. HortSci 47(6):710–711Google Scholar
  73. Greer DH, Weedon MM (2012) Modelling photosynthetic responses to temperature of grapevine (Vitis vinifera L. cv. Semillon) leaves on vines grown in a hot climate. Plant Cell Environ 35(6):1050–1064.  https://doi.org/10.1111/j.1365-3040.2011.02471.x PubMedCrossRefGoogle Scholar
  74. Greer DH, Weedon MM (2013) The impact of high temperatures on Vitis vinifera L. cv. Semillon grapevine performance and berry ripening. Front Plant Sci 4.  https://doi.org/10.3389/fpls.2013.00491
  75. Greer DH, Weedon MM (2014) Temperature-dependent responses of the berry developmental processes of three grapevine (Vitis vinifera L.) cultivars. N Z J Crop Hortic Sci 42(4):233–246.  https://doi.org/10.1080/01140671.2014.894921 CrossRefGoogle Scholar
  76. Grimplet, Wheatley MD, Jouira HB, Deluc LG, Cramer GR, Cushman JC (2009) Proteomic and selected metabolite analysis of grape berry tissues under well-watered and water-deficit stress conditions. Proteomics 9(9):2503–2528.  https://doi.org/10.1002/pmic.200800158 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Guo YP, Zhou HF, Zhang LC (2006) Photosynthetic characteristics and protective mechanisms against photooxidation during high temperature stress in two citrus species. Sci Hortic 108(3):260–267.  https://doi.org/10.1016/j.scienta.2006.01.029 CrossRefGoogle Scholar
  78. Guo M, Liu JH, Ma X, Luo DX, Gong ZH, Lu MH (2016) The plant heat stress transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses. Front Plant Sci 7.  https://doi.org/10.3389/fpls.2016.00114
  79. Gutiérrez-Gamboa G, Garde-Cerdán T, Gonzalo-Diago A, Moreno-Simunovic Y, Martínez-Gil AM (2017) Effect of different foliar nitrogen applications on the must amino acids and glutathione composition in Cabernet Sauvignon vineyard. J Food Sci Technol 75:147–154.  https://doi.org/10.1016/j.lwt.2016.08.039 CrossRefGoogle Scholar
  80. Gutiérrez-Gamboa G, Portu J, López R, Santamaría P, Garde-Cerdán T (2018) Elicitor and nitrogen applications to Garnacha, Graciano and Tempranillo vines: effect on grape amino acid composition. J Sci Food Agric 98(6):2341–2349.  https://doi.org/10.1002/jsfa.8725 PubMedCrossRefGoogle Scholar
  81. Hall A, Lamb DW, Holzapfel B, Louis J (2002) Optical remote sensing applications in viticulture - a review. Aust J Grape Wine Res 8(1):36–47.  https://doi.org/10.1111/j.1755-0238.2002.tb00209.x CrossRefGoogle Scholar
  82. Hannah L, Roehrdanz PR, Ikegami M, Shepard AV, Shaw MR, Tabor G, Zhi L, Marquet PA, Hijmans RJ (2013) Climate change, wine, and conservation. Proc Natl Acad Sci 110(17):6907–6912.  https://doi.org/10.1073/pnas.1210127110 PubMedCrossRefGoogle Scholar
  83. Hasanuzzaman M, Nahar K, Alam M, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14(5):9643–9684.  https://doi.org/10.3390/ijms14059643 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Hendrickson L, Forster B, Furbank RT, Chow WS (2004) Processes contributing to photoprotection of grapevine leaves illuminated at low temperature. Physiol Plant 121(2):272–281.  https://doi.org/10.1111/j.0031-9317.2004.0324.x PubMedCrossRefGoogle Scholar
  85. Hochberg U, Batushansky A, Degu A, Rachmilevitch S, Fait A (2015) Metabolic and physiological responses of Shiraz and Cabernet Sauvignon (Vitis vinifera L.) to near optimal temperatures of 25 and 35 °C. Int J Mol Sci 16(10):24276–24294.  https://doi.org/10.3390/ijms161024276 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Hu Y, Schmidhalter U (2005) Drought and salinity: a comparison of their effects on mineral nutrition of plants. J Plant Nutr Soil Sci 168(4):541–549.  https://doi.org/10.1002/jpln.200420516 CrossRefGoogle Scholar
  87. Huang YF, Doligez A, Fournier-Level A, Le Cunff L, Bertrand Y, Canaguier A, Morel C, Miralles V, Veran F, Souquet JM, Cheynier V, Terrier N, This P (2012) Dissecting genetic architecture of grape proanthocyanidin composition through quantitative trait locus mapping. BMC Plant Biol 12(1):30.  https://doi.org/10.1186/1471-2229-12-30 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Hubbard KE, Nishimura N, Hitomi K, Getzoff ED, Schroeder JI (2010) Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes Dev 24(16):1695–1708.  https://doi.org/10.1101/gad.1953910 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Huffaker RC, Radin T, Kleinkopf GE, Cox EL (1970) Effects of mild water stress on enzymes of nitrate assimilation and of the carboxylative phase of photosynthesis in barley. Crop Sci 10(5):471.  https://doi.org/10.2135/cropsci1970.0011183X001000050003x CrossRefGoogle Scholar
  90. Iacono F, Buccella A, Peterlunger E (1998) Water stress and rootstock influence on leaf gas exchange of grafted and ungrafted grapevines. Sci Hortic 75(1–2):27–39.  https://doi.org/10.1016/s0304-4238(98)00113-7 CrossRefGoogle Scholar
  91. Iglesias A, Avis K, Benzie M, Fisher P, Harley M, Hodgson N, Horrocks L, Moneo M, Webb J (2007) Adaptation to climate change in the agricultural sector. AEA Energy and Environment ED05334 (1):137Google Scholar
  92. IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Summaries, frequently asked questions, and cross-chapter boxes. A contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change:190Google Scholar
  93. Jackson RD (1986) Remote sensing of biotic and abiotic plant stress. Annu Rev Phytopathol 24(1):265–287.  https://doi.org/10.1146/annurev.py.24.090186.001405 CrossRefGoogle Scholar
  94. Jackson DI, Lombard PB (1993) Environmental and management practices affecting grape composition and wine quality—a review. Am J Enol Vitic 44:409–430Google Scholar
  95. Jaworski T, Hilszczański J (2013) The effect of temperature and humidity changes on insects development their impact on forest ecosystems in the expected climate change. For Res Inf Pap 74(4):345–355.  https://doi.org/10.2478/frp-2013-0033 CrossRefGoogle Scholar
  96. Jones GV (2013) Winegrape phenology. 563–584.  https://doi.org/10.1007/978-94-007-6925-0_30
  97. Jones GV, White MA, Cooper OR, Storchmann K (2005) Climate change and global wine quality. Clim Chang 73(3):319–343.  https://doi.org/10.1007/s10584-005-4704-2 CrossRefGoogle Scholar
  98. Kato MC, Hikosaka K, Hirotsu N, Makino A, Hirose T (2003) The excess light energy that is neither utilized in photosynthesis nor dissipated by photoprotective mechanisms determines the rate of photoinactivation in photosystem II. Plant Cell Physiol 44(3):318–325PubMedCrossRefGoogle Scholar
  99. Katsaruware-Chapoto RD, Mafongoya PL, Gubba A (2017) Responses of insect pests and plant diseases to changing and variable climate: a review. J Agric Sci 9(12):160.  https://doi.org/10.5539/jas.v9n12p160 CrossRefGoogle Scholar
  100. Keller M. (2010a). The science of grapevines: anatomy and physiology. Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, USA, p 227–310.  https://doi.org/10.1016/b978-0-12-374881-2.00007-6
  101. Keller M (2010b) Managing grapevines to optimise fruit development in a challenging environment: a climate change primer for viticulturists. Aust J Grape Wine Res 16:56–69.  https://doi.org/10.1111/j.1755-0238.2009.00077.x CrossRefGoogle Scholar
  102. Keller M, Kummer M, Vasconcelos MC (2001) Reproductive growth of grapevines in response to nitrogen supply and rootstock. Aust J Grape Wine Res 7(1):12–18.  https://doi.org/10.1111/j.1755-0238.2001.tb00188.x CrossRefGoogle Scholar
  103. Keller M, Tarara JM, Mills LJ (2010) Spring temperatures alter reproductive development in grapevines. Aust J Grape Wine Res 16(3):445–454.  https://doi.org/10.1111/j.1755-0238.2010.00105.x CrossRefGoogle Scholar
  104. Kliewer WM, Torres RE (1972) Effect of controlled day and night temperatures on grape coloration. Am J Enol Vitic 23(2):71–77Google Scholar
  105. Köse C, Güleryüz M (2006) Effects of auxins and cytokinins on graft union of grapevine (Vitis vinifera L.). N Z J Crop Hortic Sci 34(2):145–150.  https://doi.org/10.1080/01140671.2006.9514399 CrossRefGoogle Scholar
  106. Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42(1):313–349.  https://doi.org/10.1146/annurev.pp.42.060191.001525 CrossRefGoogle Scholar
  107. Lacroux F, Trégoat O, Van Leeuwen C, Pons A, Tominaga T, Lavigne-Cruège V, Dubourdieu D (2008) Effect of foliar nitrogen and sulphur application on aromatic expression of Vitis vinifera L. cv. Sauvignon blanc. J Int Sci Vigne Vin 42(3):125.  https://doi.org/10.20870/oeno-one.2008.42.3.816 CrossRefGoogle Scholar
  108. Lamb DW, Weedon MM, Bramley RGV (2008) Using remote sensing to predict grape phenolics and colour at harvest in a Cabernet Sauvignon vineyard: timing observations against vine phenology and optimising image resolution. Aust J Grape Wine Res 10(1):46–54.  https://doi.org/10.1111/j.1755-0238.2004.tb00007.x CrossRefGoogle Scholar
  109. Lazo-Javalera MF, Tiznado-Hernández ME, Vargas-Arispuro I, Valenzuela-Soto E, Rocha-Granados MC, Martínez-Montero ME, Rivera-Domínguez M (2015) Data on antioxidant activity in grapevine (Vitis vinifera L.) following cryopreservation by vitrification. Data Brief 5:549–555.  https://doi.org/10.1016/j.dib.2015.10.012 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Leibar U, Pascual I, Aizpurua A, Morales F, Unamunzaga O (2017) Grapevine nutritional status and K concentration of must under future expected climatic conditions texturally different soils. J Soil Sci Plant Nutr.  https://doi.org/10.4067/s0718-95162017005000028
  111. Lereboullet AL, Bardsley D, Beltrando G (2013) Assessing vulnerability and framing adaptive options of two Mediterranean wine growing regions facing climate change: Roussillon (France) and McLaren Vale (Australia). EchoGéo (23).  https://doi.org/10.4000/echogeo.13384
  112. Mabrouk H, Sinoquet H (1998) Indices of light microclimate and canopy structure of grapevines determined by 3D digitising and image analysis, and their relationship to grape quality. Aust J Grape Wine Res 4(1):2–13.  https://doi.org/10.1111/j.1755-0238.1998.tb00129.x CrossRefGoogle Scholar
  113. Malheiro AC, Santos JA, Fraga H, Pinto JG (2010) Climate change scenarios applied to viticultural zoning in Europe. Clim Res 43(3):163–177.  https://doi.org/10.3354/cr00918 CrossRefGoogle Scholar
  114. Martín P, Delgado R, González MR, Gallegos JI (2004) Colour of ‘tempranillo’ grapes as affected by different nitrogen and potassium fertilization rates. Acta Hortic (652):153–160.  https://doi.org/10.17660/ActaHortic.2004.652.18
  115. Martínez de Toda F, Sancha JC, Zheng W, Balda P (2014) Leaf area reduction by trimming, a growing technique to restore the anthocyanins: sugars ratio decoupled by the warming climate. Vitis 53(4):189–192Google Scholar
  116. Matsui S, Ryugo K, Kliewer WM (1986) Inhibition of Napa Gamay and Thompson seedless berry development by heat stress and its partial reversibility by applications of gibberellic acid and promalin. Acta Hortic (179):425–426.  https://doi.org/10.17660/ActaHortic.1986.179.65
  117. Meggio F, Zarco-Tejada PJ, Núñez LC, Sepulcre-Cantó G, González MR, Martín P (2010) Grape quality assessment in vineyards affected by iron deficiency chlorosis using narrow-band physiological remote sensing indices. Remote Sens Environ 114(9):1968–1986.  https://doi.org/10.1016/j.rse.2010.04.004 CrossRefGoogle Scholar
  118. Meng JF, Yu Y, Shi TC, Fu YS, Zhao T, Zhang ZW (2018) Melatonin treatment of pre-veraison grape berries modifies phenolic components and antioxidant activity of grapes and wine. Food Sci Technol.  https://doi.org/10.1590/1678-457x.24517
  119. Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Braslavská O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl Å, Defila C, Donnelly A, Filella Y, Jatczak K, MÅGe F, Mestre A, Nordli Y, Peñuelas J, Pirinen P, Remišová V, Scheifinger H, Striz M, Susnik A, van Vliet AJH, Wielgolaski F-E, Zach S, Zust ANA (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12(10):1969–1976.  https://doi.org/10.1111/j.1365-2486.2006.01193.x CrossRefGoogle Scholar
  120. Millar AA (1972) Thermal regime of grapevines. Am J Enol Vitic 23(4):173–176Google Scholar
  121. Millar AH (2003) Control of ascorbate synthesis by respiration and its implications for stress responses. Plant Physiol 133(2):443–447.  https://doi.org/10.1104/pp.103.028399 PubMedPubMedCentralCrossRefGoogle Scholar
  122. Mira de Orduña R (2010) Climate change associated effects on grape and wine quality and production. Food Res Int 43(7):1844–1855.  https://doi.org/10.1016/j.foodres.2010.05.001 CrossRefGoogle Scholar
  123. Mirdehghan SH, Rahimi S (2016) Pre-harvest application of polyamines enhances antioxidants and table grape (Vitis vinifera L.) quality during postharvest period. Food Chem 196:1040–1047.  https://doi.org/10.1016/j.foodchem.2015.10.038 PubMedCrossRefGoogle Scholar
  124. Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58(1):459–481.  https://doi.org/10.1146/annurev.arplant.58.032806.103946 PubMedCrossRefGoogle Scholar
  125. Mori K, Goto-Yamamoto N, Kitayama M, Hashizume K (2015) Effect of high temperature on anthocyanin composition and transcription of flavonoid hydroxylase genes in ‘pinot noir’ grapes (Vitis vinifera L.). J Hortic Sci Biotechnol 82(2):199–206.  https://doi.org/10.1080/14620316.2007.11512220 CrossRefGoogle Scholar
  126. Mosedale JR, Abernethy KE, Smart RE, Wilson RJ, Maclean IMD (2016) Climate change impacts and adaptive strategies: lessons from the grapevine. Glob Chang Biol 22(11):3814–3828.  https://doi.org/10.1111/gcb.13406 PubMedCrossRefGoogle Scholar
  127. Moutinho-Pereira JM, Magalhães N, Torres de Castro LF, Chaves MM, Torres-Pereira JM (2001) Physiological responses of grapevine leaves to Bordeaux mixture under light stress conditions. Vitis 40(3):117–121Google Scholar
  128. Moutinho-Pereira JM, Correia CM, Gonçalves BM, Bacelar EA, Torres-Pereira JM (2004) Leaf gas exchange and water relations of grapevines grown in three different conditions. Photosynthetica 42(1):81–86.  https://doi.org/10.1023/B:PHOT.0000040573.09614.1d CrossRefGoogle Scholar
  129. Moutinho-Pereira J, Magalhães N, Gonçalves B, Bacelar E, Brito M, Correia C (2007) Gas exchange and water relations of three Vitis vinifera L. cultivars growing under Mediterranean climate. Photosynthetica 45(2):202–207.  https://doi.org/10.1007/s11099-007-0033-1 CrossRefGoogle Scholar
  130. Moutinho-Pereira J, Correia CM, Gonçalves B, Bacelar EA, Coutinho JF, Ferreira HF, Lousada JL, Cortez MI (2012) Impacts of leafroll-associated viruses (GLRaV-1 and -3) on the physiology of the Portuguese grapevine cultivar ‘Touriga Nacional’ growing under field conditions. Ann Appl Biol 160(3):237–249.  https://doi.org/10.1111/j.1744-7348.2012.00536.x CrossRefGoogle Scholar
  131. Mozell MR, Thach L (2014) The impact of climate change on the global wine industry: challenges & solutions. Wine Econ Policy 3(2):81–89.  https://doi.org/10.1016/j.wep.2014.08.001 CrossRefGoogle Scholar
  132. Neethling E, Barbeau G, Julien S, Le Roux R, Quénol H (2016) Local based approach for assessing climate change adaptation in viticulture. Proceedings of Climwine, sustainable grape and wine production in the context of climate change. 11–13 April 2016, Bordeaux, p 121–130Google Scholar
  133. Oliveira M, Teles J, Barbosa P, Olazabal F, Queiroz J (2014) Shading of the fruit zone to reduce grape yield and quality losses caused by sunburn. J Int Sci Vigne Vin 48(3):179.  https://doi.org/10.20870/oeno-one.2014.48.3.1579 CrossRefGoogle Scholar
  134. Ollat N, Touzard JM (2014) Long-term adaptation to climate change in viticulture and enology: the LACCAVE project. J Int Sci Vigne Vin (special issue LACCAVE):1–7Google Scholar
  135. Ollat N, van Leeuwen C, Garcia de Cortazar I, Touzard J-M (2017) The challenging issue of climate change for sustainable grape and wine production. OENO One 51(2):59–60.  https://doi.org/10.20870/oeno-one.2017.51.2.1872 CrossRefGoogle Scholar
  136. Overpeck JT, Rind D, Goldberg R (1990) Climate-induced changes in forest disturbance and vegetation. Nature 343(6253):51–53.  https://doi.org/10.1038/343051a0 CrossRefGoogle Scholar
  137. Palliotti A, Gatti M, Poni S (2011) Early leaf removal to improve vineyard efficiency: gas exchange, source-to-sink balance, and reserve storage responses. Am J Enol Vitic 62(2):219–228.  https://doi.org/10.5344/ajev.2011.10094 CrossRefGoogle Scholar
  138. Papageorgiou GC (2004) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, DordrechtCrossRefGoogle Scholar
  139. Parker AK, De CortÁZar-Atauri IG, Van Leeuwen C, Chuine I (2011) General phenological model to characterise the timing of flowering and veraison of Vitis vinifera L. Aust J Grape Wine Res 17(2):206–216.  https://doi.org/10.1111/j.1755-0238.2011.00140.x CrossRefGoogle Scholar
  140. Parker A, de Cortázar-Atauri IC, Chuine I, Barbeau G, Bois B, Boursiquot JM, Cahurel JY, Claverie M, Dufourcq T, Gény L, Guimberteau G, Hofmann RW, Jacquet O, Lacombe T, Monamy C, Ojeda H, Panigai L, Payan JC, Lovelle BR, Rouchaud E, Schneider C, Spring JL, Storchi P, Tomasi D, Trambouze W, Trought M, van Leeuwen C (2013) Classification of varieties for their timing of flowering and veraison using a modelling approach: a case study for the grapevine species Vitis vinifera L. Agric For Meteorol 180:249–264.  https://doi.org/10.1016/j.agrformet.2013.06.005 CrossRefGoogle Scholar
  141. Parker AK, Hofmann RW, van Leeuwen C, McLachlan ARG, Trought MCT (2015) Manipulating the leaf area to fruit mass ratio alters the synchrony of total soluble solids accumulation and titratable acidity of grape berries. Aust J Grape Wine Res 21(2):266–276.  https://doi.org/10.1111/ajgw.12132 CrossRefGoogle Scholar
  142. Pellegrino A, Lebon E, Simonneau T, Wery J (2005) Towards a simple indicator of water stress in grapevine (Vitis vinifera L.) based on the differential sensitivities of vegetative growth components. Aust J Grape Wine Res 11(3):306–315.  https://doi.org/10.1111/j.1755-0238.2005.tb00030.x CrossRefGoogle Scholar
  143. Pérez-Álvarez EP, Garde-Cerdán T, García-Escudero E, Martínez-Vidaurre JM (2017) Effect of two doses of urea foliar application on leaves and grape nitrogen composition during two vintages. J Sci Food Agric 97(8):2524–2532.  https://doi.org/10.1002/jsfa.8069 PubMedCrossRefGoogle Scholar
  144. Petrie PR, Clingeleffer PR (2005) Effects of temperature and light (before and after budburst) on inflorescence morphology and flower number of chardonnay grapevines (Vitis vinifera L.). Aust J Grape Wine Res 11(1):59–65.  https://doi.org/10.1111/j.1755-0238.2005.tb00279.x CrossRefGoogle Scholar
  145. Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28(1):489–521.  https://doi.org/10.1146/annurev-cellbio-092910-154055 PubMedPubMedCentralCrossRefGoogle Scholar
  146. Pinheiro C, Chaves MM (2011) Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot 62(3):869–882.  https://doi.org/10.1093/jxb/erq340 PubMedCrossRefGoogle Scholar
  147. Pirie A, Mullins MG (1976) Changes in anthocyanin and phenolics content of grapevine leaf and fruit tissues treated with sucrose, nitrate, and abscisic acid. Plant Physiol 58(4):468–472.  https://doi.org/10.1104/pp.58.4.468 PubMedPubMedCentralCrossRefGoogle Scholar
  148. Pradubsuk S, Davenport JR (2011) Seasonal distribution of micronutrients in mature ‘Concord’ grape: boron, Iron, manganese, copper, and zinc. J Am Soc Hortic Sci 136(1):69–77Google Scholar
  149. Pratt C (1971) Reproductive anatomy in cultivated grapevines—a review. Am J Enol Vitic 22:92–109Google Scholar
  150. Proffitt T, Campbell-Clause J (2012) Managing grapevine nutrition and vineyard soil health. Wines of Western Australia:1–32 www.winewa.asn.au
  151. Ramegowda V, Senthil-Kumar M (2015) The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J Plant Physiol 176:47–54.  https://doi.org/10.1016/j.jplph.2014.11.008 PubMedCrossRefGoogle Scholar
  152. Ramos MC, Jones GV, Martínez-Casasnovas JA (2008) Structure and trends in climate parameters affecting winegrape production in northeast Spain. Clim Res 38:1–15.  https://doi.org/10.3354/cr00759 CrossRefGoogle Scholar
  153. Rejeb I, Pastor V, Mauch-Mani B (2014) Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants 3(4):458–475.  https://doi.org/10.3390/plants3040458 PubMedPubMedCentralCrossRefGoogle Scholar
  154. Rey-Caramés C, Diago M, Martín M, Lobo A, Tardaguila J (2015) Using RPAS multi-spectral imagery to characterise vigour, leaf development, yield components and berry composition variability within a vineyard. Remote Sens 7(11):14458–14481.  https://doi.org/10.3390/rs71114458 CrossRefGoogle Scholar
  155. Rienth M, Torregrosa L, Sarah G, Ardisson M, Brillouet JM, Romieu C (2016) Temperature desynchronizes sugar and organic acid metabolism in ripening grapevine fruits and remodels their transcriptome. BMC Plant Biol 16(1).  https://doi.org/10.1186/s12870-016-0850-0
  156. Riou C, Becker N, Sotés RV, Gomez-Miguel VAO (1994) Le déterminisme climatique de la maturation du raisin: application au zonage de la teneur en sucre dans la communauté européenne. Office des Publications Officielles des Communautés Européennes, LuxembourgGoogle Scholar
  157. Risco D, Pérez D, Yeves A, Castel JR, Intrigliolo DS (2014) Early defoliation in a temperate warm and semi-arid Tempranillo vineyard: vine performance and grape composition. Aust J Grape Wine Res 20(1):111–122.  https://doi.org/10.1111/ajgw.12049 CrossRefGoogle Scholar
  158. Rodrigues ML, Chaves MM, Wendler R, David MM, Quick WP, Leegood RC, Stitt M, Pereira JS (1993) Osmotic adjustment in water stressed grapevine leaves in relation to carbon assimilation. Aust J Plant Physiol 20(3):309.  https://doi.org/10.1071/pp9930309 CrossRefGoogle Scholar
  159. Sadras VO, Moran MA (2012) Elevated temperature decouples anthocyanins and sugars in berries of Shiraz and Cabernet Franc. Aust J Grape Wine Res 18(2):115–122.  https://doi.org/10.1111/j.1755-0238.2012.00180.x CrossRefGoogle Scholar
  160. Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7.  https://doi.org/10.3389/fpls.2016.00571
  161. Salvucci ME, Crafts-Brandner SJ (2004) Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant 120(2):179–186.  https://doi.org/10.1111/j.0031-9317.2004.0173.x PubMedCrossRefGoogle Scholar
  162. Schachtman DP, Goodger JQD (2008) Chemical root to shoot signaling under drought. Trends Plant Sci 13(6):281–287.  https://doi.org/10.1016/j.tplants.2008.04.003 PubMedCrossRefGoogle Scholar
  163. Schmidt R, Schippers JHM (2015) ROS-mediated redox signaling during cell differentiation in plants. Biochim Biophys Acta 1850(8):1497–1508.  https://doi.org/10.1016/j.bbagen.2014.12.020 PubMedCrossRefGoogle Scholar
  164. Scholander PF, Hammel HT, Hemmingsen EA, Bradstreet ED (1964) Hydrostatic pressure and osmotic potential in leaves of mangrovers and some other plants. Proc Natl Acad Sci 52(1):119–125PubMedCrossRefGoogle Scholar
  165. Schultz H (2000) Climate change and viticulture: a European perspective on climatology, carbon dioxide and UV-B effects. Aust J Grape Wine Res 6(1):2–12.  https://doi.org/10.1111/j.1755-0238.2000.tb00156.x CrossRefGoogle Scholar
  166. Schultz HR (2010) Climate change and viticulture: research needs for facing the future. J Wine Res 21(2–3):113–116.  https://doi.org/10.1080/09571264.2010.530093 CrossRefGoogle Scholar
  167. Schultz H, Matthews M (1993) Xylem development and hydraulic conductance in sun and shade shoots of grapevine (Vitis vinifera L.): evidence that low light uncouples water transport capacity from leaf area. Planta 190(3).  https://doi.org/10.1007/bf00196969
  168. Sebastian B, Lissarrague JR, Santesteban LG, Linares R, Junquera P, Baeza P (2016) Effect of irrigation frequency and water distribution pattern on leaf gas exchange of cv. ‘Syrah’ grown on a clay soil at two levels of water availability. Agric Water Mgmt 177:410–418.  https://doi.org/10.1016/j.agwat.2016.08.032 CrossRefGoogle Scholar
  169. Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26.  https://doi.org/10.1155/2012/217037 CrossRefGoogle Scholar
  170. Silva R, Gomes V, Mendes-Faia A, Melo-Pinto P (2018) Using support vector regression and hyperspectral imaging for the prediction of oenological parameters on different vintages and varieties of wine grape berries. Remote Sens 10(2):312.  https://doi.org/10.3390/rs10020312 CrossRefGoogle Scholar
  171. Skirycz A, Inzé D (2010) More from less: plant growth under limited water. Curr Opin Biotechnol 21(2):197–203.  https://doi.org/10.1016/j.copbio.2010.03.002 PubMedCrossRefGoogle Scholar
  172. Smart RE (1985) Principles of grapevine canopy microclimate manipulation with implications for yield and quality. A review. Am J Enol Vitic 36:230–239Google Scholar
  173. Smart RE, Sinclair TR (1976) Solar heating of grape berries and other spherical fruits. Agric Meteorol 17(4):241–259.  https://doi.org/10.1016/0002-1571(76)90029-7 CrossRefGoogle Scholar
  174. Soar CJ, Collins MJ, Sadras VO (2009) Irrigated Shiraz vines (Vitis vinifera L.) upregulate gas exchange and maintain berry growth in response to short spells of high maximum temperature in the field. Funct Plant Biol 36(9):801.  https://doi.org/10.1071/fp09101 CrossRefGoogle Scholar
  175. Spayd SE, Tarara JM, Mee DL, Ferguson JC (2002) Separation of sunlight and temperature effects on the composition of Vitis vinifera L. cv. Merlot berries. Am J Enol Vitic 53(3):171–182Google Scholar
  176. Spoel SH, Dong X (2008) Making sense of hormone crosstalk during plant immune responses. Cell Host Microbe 3(6):348–351.  https://doi.org/10.1016/j.chom.2008.05.009 PubMedCrossRefGoogle Scholar
  177. Spring J-L, Zufferey V (2000) Intérêt de la détermination de l’indice chlorophyllien du feuillage en viticulture. Rev Suisse Vitic Arboric Hortic 32(6):323–328Google Scholar
  178. Steele M, Gitelson AA, Rundquist D (2008) Nondestructive estimation of leaf chlorophyll content in grapes. Am J Enol Vitic 59(3):299–305Google Scholar
  179. Sweetman C, Sadras VO, Hancock RD, Soole KL, Ford CM (2014) Metabolic effects of elevated temperature on organic acid degradation in ripening Vitis vinifera fruit. J Exp Bot 65(20):5975–5988.  https://doi.org/10.1093/jxb/eru343 PubMedPubMedCentralCrossRefGoogle Scholar
  180. Tarara JM, Lee J, Spayd SE, Scagel CF (2008) Berry temperature and solar radiation alter acylation, proportion, and concentration of anthocyanin in merlot grapes. Am J Enol Vitic 59:235–247Google Scholar
  181. Tardieu F, Parent B, Simonneau T (2010) Control of leaf growth by abscisic acid: hydraulic or non-hydraulic processes? Plant Cell Environ 33(4):636–647.  https://doi.org/10.1111/j.1365-3040.2009.02091.x PubMedCrossRefGoogle Scholar
  182. Teixeira A, Eiras-Dias J, Castellarin S, Gerós H (2013) Berry Phenolics of grapevine under challenging environments. Int J Mol Sci 14(9):18711–18739.  https://doi.org/10.3390/ijms140918711 PubMedPubMedCentralCrossRefGoogle Scholar
  183. Tesic D, Woolley DJ, Hewett EW, Martin DJ (2002) Environmental effects on cv cabernet sauvignon (Vitis vinifera L.) grown in Hawke’s bay, New Zealand.: 2. Development of a site index. Aust J Grape Wine Res 8(1):27–35.  https://doi.org/10.1111/j.1755-0238.2002.tb00208.x CrossRefGoogle Scholar
  184. Tester M (2005) Abiotic stress tolerance in grasses. From model plants to crop plants. Plant Physiol 137(3):791–793.  https://doi.org/10.1104/pp.104.900138 PubMedPubMedCentralCrossRefGoogle Scholar
  185. Todorov DT, Karanov EN, Smith AR, Hall MA (2003) Chlorophyllase activity and chlorophyll content in wild type and eti 5 mutant of Arabidopsis thaliana subjected to low and high temperatures. Biol Plant 46(4):633–636.  https://doi.org/10.1023/a:1024896418839 CrossRefGoogle Scholar
  186. Tognetti VB, Mühlenbock PER, Van Breusegem F (2012) Stress homeostasis—the redox and auxin perspective. Plant Cell Environ 35(2):321–333.  https://doi.org/10.1111/j.1365-3040.2011.02324.x PubMedCrossRefGoogle Scholar
  187. Tonietto J, Carbonneau A (2004) A multicriteria climatic classification system for grape-growing regions worldwide. Agric For Meteorol 124(1–2):81–97.  https://doi.org/10.1016/j.agrformet.2003.06.001 CrossRefGoogle Scholar
  188. Toumi I, M'Sehli W, Bourgou S, Jallouli N, Bensalem-Fnayou A, Ghorbel A, Mliki A (2007) Response of ungrafted and grafted grapevine cultivans and rootstocks (Vitis sp.) to water stress. J Int Sci Vigne Vin 41(2):85.  https://doi.org/10.20870/oeno-one.2007.41.2.853 CrossRefGoogle Scholar
  189. Unwin T (2012) Terroir: at the heart of geography. In: Dougherty P (ed) The geography of wine. Springer, Dordrecht, pp 37–48.  https://doi.org/10.1007/978-94-007-0464-0_2 CrossRefGoogle Scholar
  190. van Leeuwen C, Darriet P (2016) The impact of climate change on viticulture and wine quality. J Wine Econ 11(01):150–167.  https://doi.org/10.1017/jwe.2015.21 CrossRefGoogle Scholar
  191. van Leeuwen C, Destrac-Irvine A (2017) Modified grape composition under climate change conditions requires adaptations in the vineyard. OENO One 51(2):147–154.  https://doi.org/10.20870/oeno-one.2017.51.2.1647 CrossRefGoogle Scholar
  192. van Leeuwen C, Seguin G (2006) The concept of terroir in viticulture. J Wine Res 17(1):1–10.  https://doi.org/10.1080/09571260600633135 CrossRefGoogle Scholar
  193. Vierling E, Kimpel JA (1992) Plant responses to environmental stress. Curr Opin Biotechnol 3(2):164–170.  https://doi.org/10.1016/0958-1669(92)90147-b PubMedCrossRefGoogle Scholar
  194. Vollenweider P, Günthardt-Goerg MS (2005) Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage. Environ Pollut 137(3):455–465.  https://doi.org/10.1016/j.envpol.2005.01.032 PubMedCrossRefGoogle Scholar
  195. Wahid A, Gelani S, Ashraf M, Foolad M (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61(3):199–223.  https://doi.org/10.1016/j.envexpbot.2007.05.011 CrossRefGoogle Scholar
  196. Waraich EA, Ahmad R, Halim A, Aziz T (2012) Alleviation of temperature stress by nutrient management in crop plants: a review. J Soil Sci Plant Nutr 12(2):221–244.  https://doi.org/10.4067/s0718-95162012000200003 CrossRefGoogle Scholar
  197. Wardlaw IF (1972) Responses of plants to environmental stresses. J. Levitt. Academic Press, New York, 1972. xiv, 698 pp., illus. $32.50. Physiological Ecology. Science 177(4051):786–786.  https://doi.org/10.1126/science.177.4051.786 CrossRefGoogle Scholar
  198. Watt AM, Dunn GM, May PB, Crawford SA, Barlow EWR (2008) Development of inflorescence primordia in Vitis vinifera L. cv. Chardonnay from hot and cool climates. Aust J Grape Wine Res 14(1):46–53.  https://doi.org/10.1111/j.1755-0238.2008.00006.x CrossRefGoogle Scholar
  199. White PJ, Brown PH (2010) Plant nutrition for sustainable development and global health. Ann Bot 105(7):1073–1080.  https://doi.org/10.1093/aob/mcq085 PubMedPubMedCentralCrossRefGoogle Scholar
  200. Winkler AJ, Amerine MA (1944) Composition and quality of musts and wines of California grapes. Hilgardia 15(6):493–675.  https://doi.org/10.3733/hilg.v15n06p493 CrossRefGoogle Scholar
  201. Xi ZM, Meng JF, Huo SS, Luan LY, Ma LN, Zhang ZW (2012) Exogenously applied abscisic acid to Yan73 (V. vinifera L.) grapes enhances phenolic content and antioxidant capacity of its wine. Int J Food Sci Nutr 64(4):444–451.  https://doi.org/10.3109/09637486.2012.746291 PubMedCrossRefGoogle Scholar
  202. Yamada M, Hidaka T, Fukamachi H (1996) Heat tolerance in leaves of tropical fruit crops as measured by chlorophyll fluorescence. Sci Hortic 67(1–2):39–48.  https://doi.org/10.1016/s0304-4238(96)00931-4 CrossRefGoogle Scholar
  203. Zarco-Tejada PJ, Guillén-Climent ML, Hernández-Clemente R, Catalina A, González MR, Martín P (2013) Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle (UAV). Agric For Meteorol 171-172:281–294.  https://doi.org/10.1016/j.agrformet.2012.12.013 CrossRefGoogle Scholar
  204. Zerihun A, Treeby MT (2002) Biomass distribution and nitrate assimilation in response to N supply for Vitis vinifera L. cv. Cabernet Sauvignon on five Vitis rootstock genotypes. Aust J Grape Wine Res 8(3):157–162.  https://doi.org/10.1111/j.1755-0238.2002.tb00251.x CrossRefGoogle Scholar
  205. Zhang Y (2011) Foliar application of abscisic acid induces dormancy responses in greenhouse-grown grapevines. HortSci 46(9):1271–1277Google Scholar
  206. Zhang JH, Huang WD, Liu YP, Pan QH (2005) Effects of temperature acclimation pretreatment on the ultrastructure of mesophyll cells in young grape plants (Vitis vinifera L. cv. Jingxiu) under cross-temperature stresses. J Integr Plant Biol 47(8):959–970.  https://doi.org/10.1111/j.1744-7909.2005.00109.x CrossRefGoogle Scholar
  207. Zhou Y, Lam HM, Zhang J (2007) Inhibition of photosynthesis and energy dissipation induced by water and high light stresses in rice. J Exp Bot 58(5):1207–1217.  https://doi.org/10.1093/jxb/erl291 PubMedCrossRefGoogle Scholar
  208. Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167(2):313–324.  https://doi.org/10.1016/j.cell.2016.08.029 PubMedPubMedCentralCrossRefGoogle Scholar
  209. Zulini L, Rubinigg M, Zorer R, Bertamini M (2007) Effects of drought stress on chlorophyll fluorescence and photosynthetic pigments in grapevine leaves (Vitis vinifera L. Cv. 'White Riesling'). Acta Hortic (754):289–294.  https://doi.org/10.17660/ActaHortic.2007.754.37

Copyright information

© INRA and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)University of Trás-os-Montes e Alto DouroVila RealPortugal

Personalised recommendations