pp 1–13 | Cite as

Colonizing the east and the west: distribution and niche properties of a dwarf Asian honey bee invading Africa, the Middle East, the Malay Peninsula, and Taiwan

  • Daniel P. SilvaEmail author
  • Ana Carollina F. Castro
  • Bruno Vilela
  • Xin Rui Ong
  • Jennifer C. Thomas
  • Abdulaziz S. Alqarni
  • Michael S. Engel
  • John S. Ascher
Original article


Species invasions are expected to increase continuously with undeniable impact upon native biodiversity, being an important process in relation to the decline of native pollinators. We used species distribution models and multivariate analyses to assess the climatic niche properties of the red dwarf honey bee, Apis florea Fabricius (Apidae: Apini), an open-nesting species native to southern Asia and parts of the Middle East, currently invading East Africa, Sundaic tropical Southeast Asia (Peninsular Malaysia and Singapore), and East Asia (Taiwan). The species’ niche was relatively conserved, with the climatic conditions in all its invaded range overlapped by those from its native one. Its potential distribution in Africa and the Indomalayan region is broad, with anthropogenic areas likely providing new habitats and dispersal corridors in areas that were formerly too arid or too heavily forested to allow its dispersal. Future studies to evaluate the potential impacts of A. florea in invaded ranges are encouraged.


species distribution models macroecology invasion process Asia Africa 



The authors thank three independent reviewers who provided significant suggestions that considerably improved a previous version of this study.

Author contribution

DPS and MSE conceived this research and designed the experiments; MSE, JSA, JCT, ASA, and MSE provided the data; DPS, ACFC, and BV analyzed the data; and DPS, ACFC, BV, JSA, JCT, ASA, XRO, and MSE wrote the paper.

Funding information

The International Scientific Partnership Program (ISPP) at King Saud University through ISPP #0083 supported parts of this project. Also, this study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brazil (CAPES), while the compilation of distributional records was supported in part by the National Research Foundation Singapore grant R-154-000-673-651.

Supplementary material

13592_2019_711_MOESM1_ESM.docx (22 kb)
ESM 1 (DOCX 21 kb)
13592_2019_711_MOESM2_ESM.xlsx (109 kb)
ESM 2 (XLSX 109 kb)


  1. Allouche, O., Tsoar, A., Kadmon, R. (2006) Assessing the accuracy of species distribution models: Prevalence, Kappa and the True Skill Statistic (TSS). J. Appl. Ecol. 43,1223–1232.CrossRefGoogle Scholar
  2. Araújo, M., New, M. (2007) Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47.PubMedCrossRefGoogle Scholar
  3. Ascher, J.S., Soh, Z.W.W., Ho, B.M., Lee, R.Y.Y., Leong, A.Q.E., Chui, S.X., Lai., J.J.L., Lee, J.X.Q., Foo, M.S. (2019) Bees of the Bukit Timah Nature Reserve and vicinity. Gard Bull Singapore 71, 245–271.CrossRefGoogle Scholar
  4. Bezabih, G., Adgaba, N., Hepburn, H.R., Pirk, C.W.W. (2014) The territorial invasion of Apis florea in Africa. Afr. Entomol. 22, 888–890.CrossRefGoogle Scholar
  5. Blackburn, T.M., Pyšek, P., Bacher, S., Carlton, J. T., Duncan, R. P., et al (2011) A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339.PubMedCrossRefGoogle Scholar
  6. Bortolotti, L., Luthi, F., Flaminio, S., Bogo, G., Sgolastra, F. (2018). First record of the Asiatic bee Megachile disjunctiformis in Europe. Bull. Insectology 71, 143–149.Google Scholar
  7. Braaker, S., Ghazoul, J., Obrist, M.K., Moretti, M. (2014) Habitat connectivity shapes urban arthropod communities: the key role of green roofs. Ecology 95, 1010–1021.PubMedCrossRefGoogle Scholar
  8. Breiman, L. (2001) Random forests. Mach. Learn. 45, 5–32.CrossRefGoogle Scholar
  9. Broennimann, O., Fitzpatrick, M.C., Pearman, P.B., Petitpierre, B., Pellissier, L., et al. (2012) Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497.CrossRefGoogle Scholar
  10. Butz-Huryn, V.M. (1997) Ecological impacts of introduced honey bees. Q. Rev. Biol. 72, 275–297.CrossRefGoogle Scholar
  11. Cane, J.H., Tepedino, V.J. (2017) Gauging the effect of honey bee pollen collection on native bee communities. Conserv. Lett. 10, 205–210.CrossRefGoogle Scholar
  12. Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F. T., D’Amen, M., et al (2017) ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787.CrossRefGoogle Scholar
  13. Google Inc. (2018) Google Earth, version Scholar
  14. Goulson, D. (2003) Effects of introduced bees on native ecosystems. Annu. Rev. Ecol. Evol. Syst. 34, 1–26.CrossRefGoogle Scholar
  15. Guisan, A., Edwards, T.C., Hastie, T. (2002) Generalized linear and generalized additive models in studies of species distributions: Setting the scene. Ecol. Modell. 157, 89–100.CrossRefGoogle Scholar
  16. Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C., Kueffer, C. (2014) Unifying niche shift studies: Insights from biological invasions. Trends Ecol. Evol. 29, 260–269.PubMedCrossRefGoogle Scholar
  17. Guo, Q.H., Kelly, M., Graham, C.H. (2005) Support vector machines for predicting distribution of sudden oak death in California. Ecol. Modell. 182, 75–90.CrossRefGoogle Scholar
  18. Hastie, T., Tibshirani, R. (1986) Generalized Additive Models. Stat. Sci. 1, 297–310.CrossRefGoogle Scholar
  19. Hennig, E.I., Ghazoul, J. (2012) Pollinating animals in the urban environment. Urban Ecosyst 15, 149–166.CrossRefGoogle Scholar
  20. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P. G., Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978.CrossRefGoogle Scholar
  21. Hill, M.P., Gallardo, B., Terblanche, J.S. (2017) A global assessment of climatic niche shifts and human influence in insect invasions. Glob. Ecol. Biogeogr. 26, 679-689 .CrossRefGoogle Scholar
  22. Hinojosa-Díaz, I.A., Yáñez-Ordóñez, O., Chen, G., Peterson, A. T., Engel, M. S. (2005) The North American invasion of the giant resin bee (Hymenoptera: Megachilidae). J. Hymenopt. Res. 14, 69–77.Google Scholar
  23. Jarnevich, C.S., Esaias, W.E., Ma, P.L.A., Morisette, J. T., Nickeson, J. E. et al. (2014) Regional distribution models with lack of proximate predictors: Africanized honeybees expanding north. Divers. Distrib. 20, 193–201. doi: CrossRefGoogle Scholar
  24. Jiménez-Valverde, A., Lobo, J.M. (2006) The ghost of unbalanced species distribution data in geographical model predictions. Divers. Distrib. 12, 521–524.CrossRefGoogle Scholar
  25. Jiménez-Valverde, A., Lobo, J.M. (2007) Threshold criteria for conversion of probability of species presence to either-or presence–absence. Acta Oecologica, 31, 361–369.CrossRefGoogle Scholar
  26. Jiménez-Valverde, A., Peterson, A.T., Soberón, J., Overton, J. M., Aragón, P., et al. (2011) Use of niche models in invasive species risk assessments. Biol. Invasions 13, 2785–2797.CrossRefGoogle Scholar
  27. Keane, R.M., Crawley, M.J. (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 17, 164–170.CrossRefGoogle Scholar
  28. Koetz, A. (2013) Ecology, behaviour and control of Apis cerana with a focus on relevance to the Australian incursion. Insects 4, 558–592.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Le Feón, V., Aubert, M., Genoud, D., Andrieu-Ponel, V., Westrich, P., et al (2018) Range expansion of the Asian native giant resin bee Megachile sculpturalis (Hymenoptera, Apoidea, Megachilidae) in France. Ecol. Evol. 8, 1534–1542.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Liow, L.H., Sodhi, N.S., Elmqvist, T. (2001) Bee diversity along a disturbance gradient in tropical lowland forests of south-east Asia. J Appl Ecol 38, 180–192.CrossRefGoogle Scholar
  31. Lobo, J.M., Tognelli, M.F. (2011) Exploring the effects of quantity and location of pseudo-absences and sampling biases on the performance of distribution models with limited point occurrence data. J. Nat. Conserv. 19, 1–7.CrossRefGoogle Scholar
  32. Mossagegh, M.S. (1993) New geographical distribution line of Apis florea in Iran. In: Conner LJ, Rinderer T, Sylvester HA, Wongsiri S (eds) Asian Apiculture, 1st edn. Wicwas Press, Cheshire, pp 64–66Google Scholar
  33. Müller-Schärer, H., Schaffner, U. (2008) Classical biological control: Exploiting enemy escape to manage plant invasions. Biol. Invasions 10, 859–874.CrossRefGoogle Scholar
  34. Muscarella, R., Galante, P.J., Soley-Guardia, M., Boria, R. A., Kass, J. M., et al (2014) ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5, 1198–1205.CrossRefGoogle Scholar
  35. Oldroyd, B., Nanork, P. (2009) Conservation of Asian honey bees. Apidologie 40, 296–312CrossRefGoogle Scholar
  36. Paini, D.R. (2004) Impact of the introduced honey bee (Apis mellifera) (Hymenoptera: Apidae) on native bees: A review. Austral Ecol. 29, 399–407.CrossRefGoogle Scholar
  37. Paini, D.R., Sheppard, A.W., Cook, D.C., De Barro, P.J., Worner, S. P., et al. (2016) Global threat to agriculture from invasive species. Proc Natl Acad Sci USA 113, 7575–7579.PubMedCrossRefGoogle Scholar
  38. Pejchar, L., Mooney, H.A. (2009) Invasive species, ecosystem services and human well-being. Trends Ecol. Evol. 24, 497–504.PubMedCrossRefGoogle Scholar
  39. Petitpierre, B., Kueffer, C., Broennimann, O., Randin, C., Daehler, C., et al. (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science 335, 1344–1348.PubMedCrossRefGoogle Scholar
  40. Phillips, S.J., Anderson, R.P., Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231–259.CrossRefGoogle Scholar
  41. Phillips, S.J., Dudík, M. (2008) Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 31, 161–175.CrossRefGoogle Scholar
  42. Pimentel, D., Zuniga, R., Morrison, D. (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 52, 273–288.CrossRefGoogle Scholar
  43. Pyke, G.H., Ehrlich, P.R. (2010) Biological collections and ecological/environmental research: A review, some observations and a look to the future. Biol. Rev. 85, 247–266.PubMedCrossRefGoogle Scholar
  44. Quaranta, M., Sommaruga, A., Balzarini, P., Felicioli, A. (2014) A new species for the bee fauna of Italy: Megachile sculpturalis continues its colonization of Europe. Bull. Insectology 67, 287–293.Google Scholar
  45. Radloff, S.E., Hepburn, H.R., Engel, M.S. (2011) The Asian species of Apis. In: Hepburn HR, Radloff SE (eds) Honeybees of Asia, 1st edn. Springer, Berlin, pp 1–22.Google Scholar
  46. Richardson, D.M., Pysek, P., Rejmanek, M., Wightman, J., Simmonds, C., et al. (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib. 6, 93–107.CrossRefGoogle Scholar
  47. Roberts, D.R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., et al. (2017) Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40, 913–929.CrossRefGoogle Scholar
  48. Russo, L. (2016) Positive and negative impacts of non-native bee species around the world. Insects 7, 69.PubMedCentralCrossRefPubMedGoogle Scholar
  49. Schoener, T.W. (1970) Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology, 51, 408–418.CrossRefGoogle Scholar
  50. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A. J., Williamson, R. C. (2001) Estimating the support of a high-dimensional distribution. Neural Comput. 13, 1443–71.PubMedCrossRefGoogle Scholar
  51. Shebl, M.A. (2017) Discovery of Apis florea colonies in northeastern Egypt. African Entomol. 25, 248–248.CrossRefGoogle Scholar
  52. Shield, J. (2007) The Asian Honey Bee: Report of an incursion in Cairns 2007 - Technical aspects of the response. Department of Primary Industries and Fisheries (Ed.). Brisbane: pp: 1-106.Google Scholar
  53. Silva, D.P., Gonzalez, V.H., Melo, G.A.R., Lucia, M., Alvarez, L. J., et al. (2014) Seeking the flowers for the bees: Integrating biotic interactions into niche models to assess the distribution of the exotic bee species Lithurgus huberi in South America. Ecol. Modell. 273, 200–209.CrossRefGoogle Scholar
  54. Silva, D.P., Vilela, B., Buzatto, B.A., Moczek, A. P., Hortal, J. (2016) Contextualized niche shifts upon independent invasions by the dung beetle Onthophagus taurus. Biol. Invasions 18, 3137–3148.CrossRefGoogle Scholar
  55. Soberón, J., 2007. Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10, 1115–1123.PubMedCrossRefGoogle Scholar
  56. Strange, J.P., Koch, J.B., Gonzalez, V.H., Nemelka, L., Griswold, T. (2011) Global invasion by Anthidium manicatum (Linnaeus) (Hymenoptera: Megachilidae): assessing potential distribution in North America and beyond. Biol. Invasions 13, 2115–2133.CrossRefGoogle Scholar
  57. Strubbe, D., Broennimann, O., Chiron, F., Matthysen, E. (2013) Niche conservatism in non-native birds in Europe: Niche unfilling rather than niche expansion. Glob. Ecol. Biogeogr. 22, 962–970.CrossRefGoogle Scholar
  58. Tax, D.M.J., Duin, R.P.W. (2004) Support vector data description. Mach. Learn. 54, 45–66.CrossRefGoogle Scholar
  59. Threlfall, C.G., Mata, L., Mackie, J.A., Hahs, A. K., Stork, N. E., Williams, N. S.G., Livesley, S. J. (2017) Increasing biodiversity in urban green spaces through simple vegetation interventions. J Appl Ecol 54, 1874–1883.CrossRefGoogle Scholar
  60. Tylianakis, J.M., Didham, R.K., Bascompte, J., Wardle, D.A. (2008) Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363.PubMedCrossRefGoogle Scholar
  61. VanDerWal, J., Shoo, L.P., Johnson, C.N., Williams, S.E. (2009) Abundance and the environmental niche: Environmental suitability estimated from niche models predicts the upper limit of local abundance. Am. Nat. 174, 282–291.PubMedCrossRefGoogle Scholar
  62. Vanhatalo, J., Veneranta, L., Hudd, R. (2012) Species distribution modeling with Gaussian processes: A case study with the youngest stages of sea spawning whitefish (Coregonus lavaretus L. s.l.) larvae. Ecol. Modell. 228, 49–58.CrossRefGoogle Scholar
  63. Vital, M.V.C., Hepburn, R., Radloff, S., Fuchs, S. (2012) Geographic distribution of africanized honeybees (Apis mellifera) reflects niche characteristics of ancestral african subspecies. Nat. Conserv. 10, 184–190.CrossRefGoogle Scholar
  64. Warren, D.L., Glor, R.E., Turelli, M. (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62, 2868–2883.PubMedCrossRefGoogle Scholar
  65. Westrich, P., Knapp, A., Berney, I. (2015) Megachile sculpturalis Smith 1853 (Hymenoptera, Apidae), a new species for the bee fauna of Germany, now north of the Alps. Eucera 9, 3–10.Google Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.COBIMA Lab, Departamento de Ciências BiológicasInstituto Federal GoianoGoiásBrazil
  2. 2.Programa de Pós-Graduação em Biodiversidade AnimalInstituto de Ciências Biológicas Universidade Federal de Goiás, Campus IIGoiâniaBrazil
  3. 3.Instituto de BiologiaUniversidade Federal da BahiaSalvadorBrazil
  4. 4.Insect Diversity Lab, Department of Biological SciencesNational University of SingaporeSingaporeSingapore
  5. 5.Division of Entomology, Natural History MuseumUniversity of KansasLawrenceUSA
  6. 6.Department of Plant Protection, College of Food and Agriculture SciencesKing Saud UniversityRiyadhSaudi Arabia
  7. 7.Division of Entomology, Natural History Museum, and Department of Ecology & Evolutionary BiologyUniversity of KansasLawrenceUSA
  8. 8.Division of Invertebrate ZoologyAmerican Museum of Natural HistoryNew YorkUSA

Personalised recommendations