Advertisement

Apidologie

pp 1–12 | Cite as

Colombian stingless bee honeys characterized by multivariate analysis of physicochemical properties

  • Yaneth CARDONA
  • Alexandra TORRESEmail author
  • Wolfgang HOFFMANN
Original article
  • 10 Downloads

Abstract

In this study, which took place from August 2014 to August 2015, we looked at the physicochemical properties of honey produced by seven species of stingless bees and the honey bee (Apis mellifera). Every 2 months, we took honey samples from the Apis mellifera, Melipona fuscipes, Melipona favosa favosa, and Melipona compressipes, and every 3 months, samples were taken of Trigona (Frieseomelitta) nigra, Scaptotrigona sp., Nannotrigona sp., and Trigona (Tetragonisca) angustula. The results showed that the physicochemical properties depend on bee species (p < 0.05) and not on the time of year (p > 0.05). In addition, the samples were 97.2% correctly classified using multivariate analysis. We found that the water content, refractive index, total sugars, total acidity, diastase, pH, and hydroxymethylfurfural (HMF) have a discriminant power of p < 0.05

Keywords

honey stingless bees physicochemical properties Melipona species multivariate analysis 

Notes

Acknowledgments

The authors would like to also thank Russell Burrell for his cooperation in revising and editing this article.

Authors’ contribution

Y.C. and W.F. sampled honey samples. Y.C. performed experiments and analyzed data. Y.C. and A.T. wrote the manuscript. All authors revised, read, and approved the final manuscript.

Funding information

This work was supported by Ricola Foundation (Switzerland), within the framework of the project “Stingless bees as alternative pollinators” and the Universidad de Pamplona, Vicerrectoría de Investigaciones.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Disclaimer

Not applicable.

References

  1. Alqarni A.S., A.A. Owayss, A.A. Mahmoud, M.A. Hannan. (2014) Mineral content and physical properties of local and imported honeys in Saudi Arabia. Journal of Saudi Chemical Society 18(5): 618-625.CrossRefGoogle Scholar
  2. AOACInternational K., Association of Analytical Communities. (2000) Official methods of analysis of AOAC International., in: AOACInternational K., Association of Analytical Communities. (Ed.), 17th ed, Gaithersburg,MD,USA.Google Scholar
  3. Association of Official Analytical Chemists I.A. (1990) Official methods of analysis . Arlington, VA, USA: Association of Official Analytical Chemists, Inc., in: Chemists. A.A. (Ed.), 15th ed, Arlington,VA,USA.Google Scholar
  4. Atrooz O.M., M.A. Al-Sabayleh, S.Y. Al-Abbadi. (2008) Studies on physical and chemical analysis of various honey samples and their antioxidant activities. J. Biol. Sci. 8: 1338-1342.CrossRefGoogle Scholar
  5. Belay A., W.K. Solomon, G. Bultossa, N. Adgaba, S. Melaku. (2013) Physicochemical properties of the Harenna forest honey, Bale, Ethiopia. Food Chem. 141(4): 3386-3392.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bentabol Manzanares A., Z.H. García, B.R. Galdón, E.R. Rodríguez, C.D. Romero. (2011) Differentiation of blossom and honeydew honeys using multivariate analysis on the physicochemical parameters and sugar composition. Food Chem. 126(2): 664-672.CrossRefGoogle Scholar
  7. Bettar I., M.L. González-Miret, D. Hernanz, A. Marconi, F.J. Heredia, et al. (2015) Characterisation of Moroccan Spurge (Euphorbia) honeys by their physicochemical characteristics, mineral contents and colour. Arab. J. Chem.  https://doi.org/10.1016/j.arabjc.2015.01.003.
  8. Bijlsma L., L. L.M.d. Bruijn, E.P. Martens, M.J. Sommeijer. (2006) Water content of stingless bee honeys (Apidae, Meliponini): interspecific variation and comparison with honey of Apis mellifera. Apidologie 37(4): 480-486.CrossRefGoogle Scholar
  9. Bogdanov S., P. Vit, V. Kilchenmann. (1996) Sugar profiles and conductivity of stingless bee honeys from Venezuela. Apidologie 27(6): 445-450.CrossRefGoogle Scholar
  10. Boussaid A., M. Chouaibi, L. Rezig, R. Hellal, F. Donsì, et al. (2014) Physicochemical and bioactive properties of six honey samples from various floral origins from Tunisia. Arab. J. Chem.:  https://doi.org/10.1016/j.arabjc.2014.08.011.CrossRefGoogle Scholar
  11. Can Z., O. Yildiz, H. Sahin, E. Akyuz Turumtay, S. Silici, et al. (2015) An investigation of Turkish honeys: Their physico-chemical properties, antioxidant capacities and phenolic profiles. Food Chem. 180: 133-141.PubMedCrossRefGoogle Scholar
  12. Cardona Y., A. Torres, W. Hoffmann, I. Lamprecht. (2017) Differentiation of Honey from Melipona Species Using Differential Scanning Calorimetry. Food Analytical Methods:  https://doi.org/10.1007/s12161-017-1083-z.CrossRefGoogle Scholar
  13. Commission. I.H. (2009) Harmonised methods of the International Honey Commission, in: Commission I.H. (Ed.).Google Scholar
  14. Chakir A., A. Romane, G.L. Marcazzan, P. Ferrazzi. (2011) Physicochemical properties of some honeys produced from different plants in Morocco. Arab. J. Chem.:  https://doi.org/10.1016/j.arabjc.2011.10.013.CrossRefGoogle Scholar
  15. Chuttong B., Y. Chanbang, K. Sringarm, M. Burgett. (2016) Physicochemical profiles of stingless bee (Apidae: Meliponini) honey from South East Asia (Thailand). Food Chem. 192: 149-155.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Dardón M.J., C. Maldonado-Aguilera, E. Enríquez. (2013) The Pot-Honey of Guatemalan Bees, in: Vit P., Pedro S.R.M., and Roubik D. (Eds.), Pot Honey, Springer New York, pp. 395-408.Google Scholar
  17. E. W. (1995) The accurate determination of the water content of honeys. Bee World 36: 197–206.Google Scholar
  18. Eduardo Solano-Becerra C.Y.P.-M., Otto German Parada-Rivera. (2009) Identificación y caracterización de los eslabones, actores y agentes de la cadena productiva forestal madera muebles de la región norte de santander. Respuestas 14(1): 66-76.Google Scholar
  19. Egardt J., M. Mørk Larsen, P. Lassen, I. Dahllöf. (2018) Release of PAHs and heavy metals in coastal environments linked to leisure boats. Mar. Pollut. Bull. 127: 664-671.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Esti M., G. Panfili, E. Marconi, M.C. Trivisonno. (1997) Valorization of the honeys from the Molise region through physico-chemical, organoleptic and nutritional assessment. Food Chem. 58(1–2): 125-128.CrossRefGoogle Scholar
  21. Felsner M.L., C.B. Cano, R.E. Bruns, H.M. Watanabe, L.B. Almeida-Muradian, et al. (2004) Characterization of monofloral honeys by ash contents through a hierarchical design. J. Food Compos. Anal. 17(6): 737-747.CrossRefGoogle Scholar
  22. Finola M.S., M.C. Lasagno, J.M. Marioli. (2007) Microbiological and chemical characterization of honeys from central Argentina. Food Chem. 100(4): 1649-1653.CrossRefGoogle Scholar
  23. Fuenmayor C., A. Díaz-Moreno, C. Zuluaga-Domínguez, M. Quicazán. (2013) Honey of Colombian Stingless Bees: Nutritional Characteristics and Physicochemical Quality Indicators, in: Vit P., Pedro S.R.M., and Roubik D. (Eds.), Pot-Honey, Springer New York, pp. 383-394.Google Scholar
  24. Fuenmayor C.A., C.M. Zuluaga-Domínguez, A.C. Díaz-Moreno, M.C. Quicazán. (2012) ‘Miel de angelita’: Nutritional composition and physicochemical proper ties of Tetragonisca angustula honey. Interciencia 37(2): 142-147.Google Scholar
  25. Gilbert J., M.J. Shepherd, M.A. Wallwork, R.G. Harris. (1981) Determination of the Geographical Origin of Honeys by Multivariate Analysis of Gas Chromatographic Data on Their Free Amino Acid Content. J. Apic. Res. 20(2): 125-135.CrossRefGoogle Scholar
  26. Gomes S., L.G. Dias, L.L. Moreira, P. Rodrigues, L. Estevinho. (2010) Physicochemical, microbiological and antimicrobial properties of commercial honeys from Portugal. Food Chem. Toxicol. 48(2): 544-548.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Habib H.M., F.T. Al Meqbali, H. Kamal, U.D. Souka, W.H. Ibrahim. (2014) Physicochemical and biochemical properties of honeys from arid regions. Food Chem. 153: 35-43.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Karabagias I.K., A. Badeka, S. Kontakos, S. Karabournioti, M.G. Kontominas. (2014a) Characterisation and classification of Greek pine honeys according to their geographical origin based on volatiles, physicochemical parameters and chemometrics. Food Chem. 146: 548-557.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Karabagias I.K., A. Badeka, S. Kontakos, S. Karabournioti, M.G. Kontominas. (2014b) Characterization and classification of Thymus capitatus (L.) honey according to geographical origin based on volatile compounds, physicochemical parameters and chemometrics. Food Res. Int. 55: 363-372.CrossRefGoogle Scholar
  30. Karabagias I.K., A.V. Badeka, S. Kontakos, S. Karabournioti, M.G. Kontominas. (2014c) Botanical discrimination of Greek unifloral honeys with physico-chemical and chemometric analyses. Food Chem. 165: 181-190.PubMedCrossRefGoogle Scholar
  31. Karabagias I.K., M.V. Vavoura, C. Nikolaou, A.V. Badeka, S. Kontakos, et al. (2014d) Floral authentication of Greek unifloral honeys based on the combination of phenolic compounds, physicochemical parameters and chemometrics. Food Res. Int. 62: 753-760.CrossRefGoogle Scholar
  32. Krauze, A. and R. Zalewski, Classification of honeys by principal component analysis on the basis of chemical and physical parameters. Zeitschrift für Lebensmittel-Untersuchung und Forschung, 1991. 192(1): p. 19–23Google Scholar
  33. Ojeda de Rodriguez G., B. Sulbarán de Ferrer, A. Ferrer, B. Rodriguez. (2004) Characterization of honey produced in Venezuela. Food Chem. 84(4): 499-502.CrossRefGoogle Scholar
  34. Oliveira N.A.d., D.d.C. Santos (2011) Análise físico-química de méis de abelhas africanizada e nativa. Revista do Instituto Adolfo Lutz 70(2): 132-138.Google Scholar
  35. Özcan M.M., Ç. Ölmez. (2014) Some qualitative properties of different monofloral honeys. Food Chem. 163: 212-218.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Pena Crecente, R. and C. Herrero Latorre, Pattern recognition analysis applied to classification of honeys from two geographic origins. Journal of Agricultural and Food Chemistry, 1993. 41(4): p. 560–564CrossRefGoogle Scholar
  37. Persano Oddo L., R. Stefanini, M.G. Piazza, M. Accorti. (1988) Diagnosis of unifloral honey. III. Application of a statistical approach to honey classification. Apicoltura 4: 27-38.Google Scholar
  38. Roubik D., P. Vit, S. R. M. Pedro. (2013) Pot-Honey: A Legacy of Stingless Bees.Google Scholar
  39. Santiesteban-Hernández A., J.A. Cuadriello, G. Loper. (2003) Comparación de parámetros físico-químicos de mieles de abejas sin aguijón y Apis mellifera de la región del Sonocusco, Chiapas, Mexico, Seminario mesoamericano sobre abejas sin aguijón Tapachula, pp. 60-61.Google Scholar
  40. Sanz, S., et al., Application of a statistical approach to the classification of honey by geographic origin. Journal of the Science of Food and Agriculture, 1995. 69(2): p. 135–140CrossRefGoogle Scholar
  41. Shantal Rodríguez Flores, M., O. Escuredo, and M. Carmen Seijo, Assessment of physicochemical and antioxidant characteristics of Quercus pyrenaica honeydew honeys. Food Chemistry, 2015. 166: p. 101–106.PubMedCrossRefGoogle Scholar
  42. Sopade P.A., P. Halley, B. Bhandari, B. D’Arcy, C. Doebler, et al. (2003) Application of the Williams–Landel–Ferry model to the viscosity–temperature relationship of Australian honeys. J. Food Eng. 56(1): 67-75.CrossRefGoogle Scholar
  43. Souza D.S., K. Bazlen. (1998) Análises preliminares de características físico-químicasde méis de Tiúba (Melipona compressipes), Congresso Brasileiro de Apicultura, Salvador, pp. 267-268.Google Scholar
  44. Terrab A., M.J. Dı́ez, F.J. Heredia. (2002) Characterisation of Moroccan unifloral honeys by their physicochemical characteristics. Food Chem. 79(3): 373-379.CrossRefGoogle Scholar
  45. Terrab A., A.F. Recamales, D. Hernanz, F.J. Heredia. (2004) Characterisation of Spanish thyme honeys by their physicochemical characteristics and mineral contents. Food Chem. 88(4): 537-542.CrossRefGoogle Scholar
  46. Torres A., W. Hoffmann, I. Lamprecht. (2007) Thermal investigations of a nest of the stingless bee Tetragonisca angustula Illiger in Colombia. Thermochim. Acta 458(1–2): 118-123.CrossRefGoogle Scholar
  47. Tuso D.J.A. (2014) Evaluación de los cambios pre y postcosecha de la miel de especies de abejas sin aguijón, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, pp. 208.Google Scholar
  48. Vit P. (2013) Melipona favosa Pot-Honey from Venezuela, in: Vit P., Pedro S.R.M., and Roubik D. (Eds.), Pot Honey, Springer New York, pp. 363-373.Google Scholar
  49. Vit P., S. Bogdanov, V. Kilchenmann. (1994) Composition of Venezuelan honeys from stingless bees (Apidae: Meliponinae) and Apis mellifera. Apidologie 25: 278-288.CrossRefGoogle Scholar
  50. Vit P., L. Oddo, Persano, M. Marano, Luisa, E. Salas de Mejias. (1998) Venezuelan stingless bee honeys characterized by multivariate analysis of physicochemical properties. Apidologie 29(5): 377-389.CrossRefGoogle Scholar
  51. White J.W. (1975) Physical characteristics of honey. In E. Crane (Ed.), Honey, a comprehensive survey, London, UK: Hienemann.Google Scholar
  52. White J.W. (1978) Honey Adv. Food Res 24: 287–375.CrossRefGoogle Scholar
  53. Yücel Y., P. Sultanog˘lu. (2013) Characterization of honeys from Hatay Region by their physicochemical properties combined with chemometrics. Food Biosci. 1: 16-25.CrossRefGoogle Scholar
  54. Zhou J., Z. Suo, P. Zhao, N. Cheng, H. Gao, et al. (2013) Jujube honey from China: physicochemical characteristics and mineral contents. J. Food Sci. 78(3): C387-394.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  • Yaneth CARDONA
    • 1
  • Alexandra TORRES
    • 1
    Email author
  • Wolfgang HOFFMANN
    • 1
  1. 1.Departamento de Química, Grupo de BiocalorimetríaUniversidad de PamplonaPamplonaColombia

Personalised recommendations