pp 1–11 | Cite as

The capping pheromones and putative biosynthetic pathways in worker and drone larvae of honey bees Apis mellifera

  • Qiu-Hong Qin
  • Xu-Jiang He
  • Andrew B. Barron
  • Lei Guo
  • Wu-Jun Jiang
  • Zhi-Jiang ZengEmail author
Original article


In honey bees (Apis mellifera), methyl palmitate (MP), methyl oleate (MO), methyl linoleate (ML), and methyl linolenate (MLN) are important pheromone components of the capping pheromones triggering the capping behavior of worker bees. In this study, we compared the amounts of these four pheromone components in the larvae of workers and drones, prior to be capped, in the process of being capped and had been capped. The amounts of MP, MO, and MLN peaked at the capping larval stage, and ML was highest at capped larvae in worker larvae, whereas in drone larvae, the amounts of the four pheromone components were higher overall and increased with aging. Furthermore, we proposed de novo biosynthetic pathways for MP, MO, ML, and ML, from acetyl-CoA. Besides, stable isotope tracer 13C and deuterium were used to confirm that these capping pheromone components were de novo synthesized by larvae themselves rather than from their diets.


honey bee larvae capping pheromones pathways 



We thank Prof. Junwu Ma for help on biosynthetic pathway analysis and Dr. Qiang Huang for revising the manuscript.


QHQ, XJH, and WJJ conducted all experiments; ZJJ designed the experiments; QHQ, XJH, and ABB wrote the paper; and LG participated in experiments and data analysis.

Funding information

This work was supported by the National Natural Science Foundation of China (31572469, 31872432) and the Earmarked Fund for China Agriculture Research System (CARS-44-KXJ15).

Supplementary material

13592_2019_686_Fig5_ESM.png (25 kb)
Figure S1.

The correlation coefficients of the four standard curves. (PNG 25 kb)

13592_2019_686_MOESM1_ESM.tif (47 kb)
High resolution image (TIF 47 kb)
13592_2019_686_MOESM2_ESM.xls (29 kb)
Table SI. Primers for qRT-PCR. (XLS 29 kb)
13592_2019_686_MOESM3_ESM.docx (20 kb)
Table SII. Statistics of RNA sequencing in worker and drone larvae. (DOCX 19 kb)
13592_2019_686_MOESM4_ESM.xlsx (15 kb)
Table SIII. Pearson correlation coefficient among three biological replicates of each larval group. (XLSX 15 kb)
13592_2019_686_MOESM5_ESM.docx (17 kb)
Table SIV. The number of significantly differentially expressed genes in larvae of different capping stage. (DOCX 17 kb)
13592_2019_686_MOESM6_ESM.xlsx (27 kb)
Table SV. Expression of genes relating to the biosynthesis of capping pheromone components in larvae of different capping stages. (XLSX 26 kb)


  1. Ando, T., Hase, T., Arima, R., Uchiyama, M. (1988). Biosynthetic pathway of bombykol, the sex pheromone of the female silkworm moth. Agric. Bioi. Chern. 52(2), 473–478.Google Scholar
  2. Bachlava, E., Dewey, R.E., Burton, J.W., Cardinal, A.J. (2009). Mapping candidate genes for oleate biosynthesis and their association with unsaturated fatty acid seed content in soybean. Mol. Breeding 23(2), 337–347.CrossRefGoogle Scholar
  3. Breed, M.D., Guzman-Novoa, E., Hunt, G.J. (2004) Defensive behavior of honey bees: organization, genetics, and comparisons with other bees. Annu. Rev. Entomol. 49, 271–298.CrossRefGoogle Scholar
  4. Castillo, C., Chen, H., Graves, C., Maisonnasse, A., Le, C.Y., Plettner, E. (2012). Biosynthesis of ethyl oleate, a primer pheromone, in the honey bee (Apis mellifera L.). Insect Biochem. Molec. 42(6), 404–416.CrossRefGoogle Scholar
  5. Cripps, C., Blomquist, G.J., Renobales, M.D. (1986). De novo biosynthesis of linoleic acid in insects. BBA-Lipid Lipid Met. 876(3), 572–580.CrossRefGoogle Scholar
  6. Foster, S.P. (1998). Sex pheromone biosynthesis in the tortricid moth planotortrix excessana (walker) involves chain-shortening of palmitoleate and oleate. Arch. Insect Biochem. 37(2), 158–167.CrossRefGoogle Scholar
  7. Free, J.B. (1987) Pheromones of Social Bees. Chapman & Hall, LondonGoogle Scholar
  8. Free, J.B., Winder, M.E. (1983) Brood recognition by honey bee Apis mellifera workers. Anim. Behav. 31, 539–545.CrossRefGoogle Scholar
  9. He, X.J., Zhang, X.C., Jiang, W.J., Barron, A.B., Zhang, J.H., Zeng, Z.J. (2016) Starving honey bee (Apis mellifera) larvae signal pheromonally to worker bees. Sci. Rep. 6, 22359.CrossRefGoogle Scholar
  10. Hunt, G.J. (2007) Flight and fight: a comparative view of the neurophysiology and genetics of honey bee defensive behavior. J. Insect Physiol. 53, 399–410.CrossRefGoogle Scholar
  11. Kucharski, R. Maleszka, J., Foret, S., Maleszka, R. (2008) Nutritional control of reproductive status in honey bees via DNA methylation. Science 319(5871): 1827–30.CrossRefGoogle Scholar
  12. Le Conte, Y. (1994) The Recognition of Larvae by Worker Honeybees. Naturwissenschaften. 81, 462–465.CrossRefGoogle Scholar
  13. Le Conte, Y., Arnold, G., Troiler, J., Masson, C., Chappe, B., Ourisson, G. (1989) Attraction of the parasitic mite Varroa to the drone larvae of honey bees by simple aliphatic esters. Science, 245, 638–639.CrossRefGoogle Scholar
  14. Le Conte, Y., Arnold, G., Trouiler, J., Masson, C. (1990) Identification of a brood pheromone in honeybees. Naturwissenschaften.77, 334-336.CrossRefGoogle Scholar
  15. Le Conte Y., Bécard, J.M., Costagliola G., de Vaublanc, G., El Maâtaoui, M., Crauser, D., Plettner, E., Slessor, K.M. (2006) Larva salivary glands are a source of primer and releaser pheromone in honey bee (Apis mellifera L.). Naturwissenschaften. 93, 237–241.CrossRefGoogle Scholar
  16. Le Conte, Y., Ellis, M., Ritter, W. (2010). Varroa mites and honey bee health: can Varroa, explain part of the colony losses? Apidologie, 41(3), 353–363.CrossRefGoogle Scholar
  17. Liu, W., Saint, D.A. (2002) A new quantitative method of real time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics. Anal. Biochem. 1, 52–59.CrossRefGoogle Scholar
  18. Lofstedt, C., Elmfors, A., Sjögren, M., Wijk, E. (1986). Confirmation of sex pheromone biosynthesis from (16-d3) palmitic acid in the turnip moth using capillary gas chromatography. Cell Mol. Life Sci. 42(9), 1059–1061.CrossRefGoogle Scholar
  19. Maisonnasse, A., Lenior, J.C., Beslay, D., Crauser, D., Le Conte, Y. (2010) E-β-ocimene, a volatile brood pheromone involved in social regulation in the honey bee colony (Apis mellifera). PLoS One. 5, 1–7.CrossRefGoogle Scholar
  20. Mcgee, R., Spector, A. A. (1975). Fatty acid biosynthesis in erlich cells. the mechanism of short term control by exogenous free fatty acids. J. Biol. Chem. 250(14), 5419.PubMedGoogle Scholar
  21. Moshitzky, P., Miloslavski, I., Aizenshtat, Z., Applebaum, S. W. (2003). Methyl palmitate: a novel product of the medfly (ceratitis capitata) corpus allatum. Insect Biochem. Mol. Biol. 33(12), 1299–306.Google Scholar
  22. Qin, Q.H., Han, X., Liu, H., Zhang, S.W., Zeng, Z.J. (2014) Expression levels of glutamate and serotonin receptor genes in the brain of different behavioural phenotypes of worker honeybee (Apis mellifera).Türk. Entomol. Derg. 38 (4), 431–441.CrossRefGoogle Scholar
  23. Riddervold, M. H., Tittiger, C., Blomquist, G. J., Borgeson, C. E. (2002). Biochemical and molecular characterizaton of house cricket (acheta domesticus, orthoptera: gryllidae) Δ9 desaturase. Insect Biochem. Mol. Biol. 32(12), 1731–1740.Google Scholar
  24. Rodriguez, F., Hallahan, D. L., Pickett, J. A., Camps, F. (1992). Characterization of the Δ11-palmitoyl-coa-desaturase from spodoptera littoralis (lepidoptera: noctuidae). Insect Biochem. Mol. Biol. 22(2), 143–148.CrossRefGoogle Scholar
  25. Roelofs, W., Bjostad, L. (1984). Biosynthesis of lepidopteran pheromones. Bioorg. Chem. 12(4), 279–298.CrossRefGoogle Scholar
  26. Serra, M., Piña, B., Bujons, J., Camps, F., Fabriàs, G. (2006). Biosynthesis of 10, 12-dienoic fatty acids by a bifunctional Δ11desaturase in Spodoptera littoralis. Insect Biochem. Mol. Biol. 36(8), 634–641.CrossRefGoogle Scholar
  27. Slessor, K.N., Winston, M.L., Le Conte, Y. (2005) Pheromone communication in the honey bee (Apis mellifera L.). J. Chem. Ecol. 31, 2731–2745.CrossRefGoogle Scholar
  28. Stern, N., Shenberg, E., Tietz, A. (1969). Studies on the metabolism of fatty acids in leptospira: the biosynthesis of Δ9-and Δ11 -monounsaturated acids. European J. Biochem. 8(1), 101–108.CrossRefGoogle Scholar
  29. Stout, J.C., Goulson, D. (2001) The use of conspecific and interspecific scent marks by foraging bumble-bees and honeybees. Anim. Behav. 62, 183–189.CrossRefGoogle Scholar
  30. Tang, J.D., Charlton, R.E., Jurenka, R.A., Wolf, W.A., Phelan, P.L., Sreng, L., Roelofs, W.L. (1989). Regulation of pheromone biosynthesis by a brain hormone in two moth species. Proc. Natl. Acad. Sci. USA. 86(6), 1806–10.CrossRefGoogle Scholar
  31. Tarazona, S., García-Alcalde, F., Dopazo, J., Ferrer, A., Conesa, A. (2011). Differential expression in RNA-seq: a matter of depth. Genome Res. 21, 2213–2223.CrossRefGoogle Scholar
  32. Trouiller, J., Arnold, G., Le Conte, Y., Masson, C., Chappe, B. (1991) Temporal pheromonal and kairomonal secretion in the brood of honeybees. Naturwissenschaften. 78(8), 368–370.CrossRefGoogle Scholar
  33. Trouiller, J., Arnold, G., Chappe, B., Le Conte, Y., Masson, C. (1992). Semiochemical basis of infestation of honey bee brood by Varroa jacobsoni. J Chem. Ecol. 18(11), 2041–53.CrossRefGoogle Scholar
  34. Vallet, A., Cassier, P., Lensky, Y. (1991) Ontogeny of the fine structure of the mandibular glands of the honeybee (Apis mellifera L.) workers and the pheromonal activity of 2-heptanone. J. Insect Physiol. 37, 789–804.CrossRefGoogle Scholar
  35. Vandenberg, J.D., Shimanuki, H. (1987) Technique for rearing worker honeybees in the laboratory. J. Apicult. Res. 26(2), 90–97.CrossRefGoogle Scholar
  36. Wang, J. Y., Zhu, S. G., Xu, C. F. Biological chemistry (Third edition). China higher education press, Beijing, 2002.Google Scholar
  37. Winston, M. (1991) The Biology of the Honey Bee. Harvard University Press, Cambridge, MA, USA.Google Scholar
  38. Xie, C., Mao, X., Huang, J., Ding, Y., Wu, J.M., Dong, S., Kong, L., Gao, G., Li, C.Y., Wei, L.P. (2011). KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic. Acids. Res. 39, W316-W322.CrossRefGoogle Scholar
  39. Yan, W.Y., Le Conte, Y., Beslay, D., Zeng, Z.J. (2009). Identification of brood pheromone in Chinese honeybee [Apis cerana cerana (Hymenoptera: apidae)]. Scientia Agricultura Sinica 42(6), 2250–2254. (In Chinese).Google Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Honeybee Research InstituteJiangxi Agricultural UniversityNanchangPeople’s Republic of China
  2. 2.Guangxi Liuzhou Animal Husbandry and Veterinary SchoolLiuzhouPeople’s Republic of China
  3. 3.Department of Biological SciencesMacquarie UniversityNorth RydeAustralia
  4. 4.Research and Development CentreChina Tobacco Jiangxi Industrial Co., LTD.NanchangPeople’s Republic of China

Personalised recommendations