Advertisement

Apidologie

, Volume 50, Issue 5, pp 669–680 | Cite as

Flight activity of honey bee (Apis mellifera) drones

  • Maritza ReyesEmail author
  • Didier Crauser
  • Alberto Prado
  • Yves Le Conte
Original article
  • 161 Downloads

Abstract

Compared to the queen or the workers, the biology of honey bee Apis mellifera L. drones is poorly known. Available information on drone activity is based mainly on direct observations during a limited period of time and for a restricted time of the day. Complete registers of the flight activity of honey bee drones are lacking. We studied the activity of A. mellifera drones during their entire life in spring and summer by using an optical bee counter at the entrance of the hive. Drones were active in the afternoon, with most flights occurring between 14:00 and 18:00. Short orientation flights were performed at 6–9 days old, and longer mating flights of 30 min were performed from the age of 21 days onward during the spring and from the age of 13 days onward during the summer. Our registers show that 50 and 80% of the drones remained faithful to their colony (did not drift) in spring and summer, respectively. The present study confirms existing information, but also reveals unknown aspects about drone biology.

Keywords

drone flight performance longevity behavioural development 

Notes

Author contributions

MR and DC conceived, designed and performed the experiments; MR and AP analysed the results; MR wrote the original draft; AP and YLC edited the draft and participated in data interpretation. All of the authors approved the final version.

References

  1. Alaux, C., Crauser, D., Pioz, M., Saulnier, C., Le Conte, Y. (2014) Parasitic and immune-modulation of flight activity in honey bees tracked with optical counters. J. Exp. Biol. 217, 3416–3424.CrossRefGoogle Scholar
  2. Burgett, M. (1974) Drone honey bee flight from clustered swarms. Ann. Entomol. Soc. Am. 67, 683–684.Google Scholar
  3. Capaldi, E.A., Dyer, F.C. (1999) The role of orientation flights on homing performance in honeybees. J. Exp. Biol. 202, 1655–1666.PubMedGoogle Scholar
  4. Capaldi, E.A., Smith, A.D., Osborne, J.L., Fahbach, S.E., Farris, S.M., Reynolds, D.R., Edwards, A.S., Martin, A., Robinson, G.E., Poppy, G.M., Riley, J.R. (2000) Ontogeny of orientation flight in the honeybee revealed by harmonic radar. Nature 403, 537–540.CrossRefGoogle Scholar
  5. Colonello-Frattini, N., Hartfelder, K. (2009) Differential gene expression profiling in mucus glands of honey bee (Apis mellifera) drones during sexual maturation. Apidologie 10, 481–495.CrossRefGoogle Scholar
  6. Currie, R W. (1987) The biology and behaviour of drones. Bee World 68, 129–143.CrossRefGoogle Scholar
  7. Currie, R.W. and Jay, S.C. (1991) Drifting behaviour of drone honey bees (Apis mellifera L) in commercial apiaries. J. Apic. Res. 30, 61–68.CrossRefGoogle Scholar
  8. Duay, P., De Jong, D., Engels, W. (2002) Decreased flight performance and sperm production in drones of the honey bee (Apis mellifera) slightly infested by Varroa destructor mites during pupal development. Genet. Mol. Res. 1, 227–232.PubMedGoogle Scholar
  9. Dussaubat, C., Maisonnasse, A., Crauser, D., Beslay, D., Costagliola, G., Soubeyrand, S., Kretzchmar, A., Le Conte, Y. (2013) Flight behavior and pheromone changes associated to Nosema ceranae infection of honey bee workers (Apis mellifera) in field conditions. J. Invert.Pathol. 113 , 42–51.CrossRefGoogle Scholar
  10. Fukuda, H., Ohtani, T. (1977). Survival and life span of drone honeybees. Res. Popul. Ecol. 19, 51–68.Google Scholar
  11. Gary, N.E. (1992) Activities and behaviour of honey bees. In: Graham JM (Ed.), The hive and the honey bee. Dadant & Sons Inc., Hamilton, pp. 269–372.Google Scholar
  12. Goins, A., Schneider, S.S. (2013) Drone “quality” and caste interactions in the honey bee, Apis mellifera L. Insectes Soc. 60, 453–461.Google Scholar
  13. Gmeinbauer, R., Crailsheim, K. (1993) Glucose utilization during flight of honeybee (Apis mellifera) workers, drones and queens. J. Insect Physiol. 39, 959–967.Google Scholar
  14. Harrison, J.M. (1987) Roles of individual honeybee workers and drones on colonial thermogenesis. J. Exp. Biol. 129, 53–61.Google Scholar
  15. Hayashi, S., Farkhary S., Takata, M., Satoh, T., Koyama, S. (2017) Return of drones: Flight experience improves returning performance in honeybee drones. J. Insect Behav. 30(3), 237–246.CrossRefGoogle Scholar
  16. Heidinger, I.M.M., Meixner, M.D., Berg, S., Büchler, R. (2014) Observation of the mating behavior of honey bee (Apis mellifera L.) queens using radio-frequency identification (RFID): factors influencing the duration and frequency of nuptial flights. Insects 5, 513–527.CrossRefGoogle Scholar
  17. Hellmich, R.L., Rinderer, T.E., Danka, R.G., Collins, A.M., Boykin, D.L. (1991) Flight times of Africanized and European honey bee drones (Hymenoptera: Apidae). J. Econ. Entomol. 84, 61–64.Google Scholar
  18. Howell, D.E., Usinger, R.L. (1933) Observations on the flight and length of life of drone bees. Ann. Entomol. Soc. Am. 26, 239–246.Google Scholar
  19. Jaffé, R.,Moritz, R. (2010) Mating flights select for symmetry in honeybee drones (Apis mellifera). Naturwissenschaften 97, 337–343.CrossRefGoogle Scholar
  20. Koeniger, N., Koeniger, G., Gries, M., Tingek, S. (2005a) Drone competition at drone congregation areas in four Apis species. Apidologie 36, 211–221.CrossRefGoogle Scholar
  21. Koeniger, N., Koeniger, G., Pechhacker, H. (2005b) The nearer the better? Drones (Apis mellifera) prefer nearer drone congregation areas. Insect Soc. 52 , 31–35.Google Scholar
  22. Kovac, H., Stabentheiner, A., Brodschneider, R. (2009) Contribution of honeybee drones of different age to colonial thermoregulation. Apidologie, 40, 82–95.CrossRefGoogle Scholar
  23. Le Conte, Y., Crauser, D. (2006) Vers de nouveaux systèmes de comptages automatiques d’abeilles. Bull. Tech. Apic. 33, 23–30.Google Scholar
  24. Lensky, Y., Demter, U. (1985) Mating flight of the queen honeybee (Apis mellifera) in a subtropical climate. Comp. Biochem. Physiol. 81A, 229–241.Google Scholar
  25. Moritz, R.F.A., Neumann, P. (1996) Genetic analysis of the drifting of drones in Apis mellifera using multilocus DNA fingerprinting. Ethology 102(7), 580–590.Google Scholar
  26. Neumann, P., Moritz, R.F.A., Mautz, D. (2000) Colony evaluation is not affected by drifting of drone and worker honeybees (Apis mellifera L.) at a performance testing apiary. Apidologie 31, 67–79.CrossRefGoogle Scholar
  27. Neves, E., Faita, M., de Oliveira Gaia, L, Vieira Alves Júnior, V., Antonialli-Junior, F. (2011) Influence of Climate Factors on Flight Activity of Drones of Apis mellifera (Hymenoptera: Apidae). Sociobiology 57,107–111.Google Scholar
  28. Oertel, E (1956) Observation on the flight of drone honey bees. Ann. Entomol. Soc.Am. 49, 497–500.CrossRefGoogle Scholar
  29. Page, R., Peng, C. (2001) Aging and development in social insects with emphasis on the honey bee, Apis mellifera L. Exp. Gerontol. 36, 695–711.Google Scholar
  30. Prado, A., Pioz, M., Vidau, C., Requier, F., Jury, M., Crauser, D., Brunet, J-L., Le Conte, Y., Alaux, C. (2019) Exposure to pollen-bound pesticide mixtures induces longer-lived but less efficient honey bees. Sci. Total Environ. 650 , 1250–1260.CrossRefGoogle Scholar
  31. Rinderer, T., Oldroyd B, Wonsiri, S., Allen Sylvester, H., De Guzman L, Potichot, S. Sheppard, W., Buckmann, S (1993) Time of drone flight in four honey bee species in south-eastern Thailand. J. Apic. Res. 32 (1), 27–33.CrossRefGoogle Scholar
  32. Rueppell, O., Fondrk, M.K. and Page, R.E. (2005) Biodemographic analysis of male honey bee mortality. Aging cell 4, 13–19.CrossRefGoogle Scholar
  33. Ruttner, H. (1966) The Life and Flight Activity of Drones. Bee World 47(3), 93–100.CrossRefGoogle Scholar
  34. Ruttner, H., Ruttner, F. (1972). Untersuchungen über die Flugaktivität und das Paarungsverhalten der Drohnen. V.-Drohnensammelplätze und Paarungsdistanz. Apidologie, 3, 203–232.CrossRefGoogle Scholar
  35. Rowell, G.A., Taylor, O.R., Locke, S.J. (1986) Variation among commercial honey bee stocks. Apidologie 17(2), 137–158.CrossRefGoogle Scholar
  36. Slone, J.D., Stout, T.L., Huang, Z.Y., Schneider, S.S. (2012) The influence of drone physical condition on the likelihood of receiving vibration signals from worker honey bees, Apis mellifera. Insectes Soc. 59, 101–107.Google Scholar
  37. Tozetto, S., Rachinsky, A., Engels, W. (1997) Juvenile hormone promotes flight activity in drones (Apis mellifera carnica). Apidologie 28, 77–84.CrossRefGoogle Scholar
  38. Winston, M. (1987) The biology of the honey bee. Cambridge, Harvard Univerty Press. 276 p.Google Scholar
  39. Witherell, P.C. (1971) Duration of flight and interflight time of drone honey bees, Apis mellifera. Ann. Entomol. Soc. Am. 64(3), 609–612.CrossRefGoogle Scholar
  40. Woyke, J., Wilde, J., Wilde, M. (2001) Apis dorsata drone flights, collection of semen from everted endophalli and instrumental insemination of queens. Apidologie 32, 407–416.CrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.INRA, UR 406 Abeilles et Environnement, Laboratoire Biologie et Protection de l’abeille, Site AgroparcAvignonFrance
  2. 2.Escuela Nacional de Estudios SuperioresUnidad Juriquilla, UNAMQuerétaroMexico

Personalised recommendations