Advertisement

Apidologie

, Volume 50, Issue 5, pp 657–668 | Cite as

Neonicotinoids and fipronil concentrations in honeybees associated with pesticide use in Brazilian agricultural areas

  • Dayson CastilhosEmail author
  • Jeferson L. D. Dombroski
  • Genevile C. Bergamo
  • Kátia P. Gramacho
  • Lionel S. Gonçalves
Original article

Abstract

Brazil leads global lists of honeybee colony losses in South America as well as pesticide use, according to a web-based survey (http://www.nobeenofood.com/beealert). In association with that survey, Africanized honeybee (Apis mellifera) samples were opportunistically collected when bee poisoning was apparently linked to pesticide use in crops. The objective was to determine concentrations of fipronil and neonicotinoids in live and dead honeybees, in areas where these compounds are widely used in agriculture. Pesticide residues in honeybees (54 live and 60 dead composite samples) were detected with mass spectrometry (UHPLC-MS/MS using QuEChERS methodology). Toxicological analyses in both matrices detected multiple contaminations with highest indices by fipronil with frequency of 55.3% and amplitude (0.7–23,539.7 ng/g), thiamethoxam 20.2% (0.6–13.6 ng/g), imidacloprid 3.5% (4.5–16.2 ng/g), nitenpyram 1.8% (3.8–7.4 ng/g), and thiacloprid 0.9% (1.6 ng/g). Neonicotinoids and fipronil residues had higher frequencies and amplitudes in honeybees collected near sugarcane plantations and orange orchards in northwest São Paulo state and other agro-industrial rural landscapes across the country dominated with fields of soybean, corn, and tropical fruit crops. These systemic pesticides were presumed to be primary mechanisms of honeybee colony losses in Brazil, according to a recently published 5-year survey by the same authors and reinforced by current analyses.

Keywords

Apis mellifera colony losses pesticide UHPLC-MS/MS QuEChERS rural landscapes 

Notes

Acknowledgments

Authors thank BEE OR NOT TO BE for access to their database, UFERSA for resources and facilities, EVA CRANE TRUST for funding, Arthur David and Cristina Botías for method support, Paulo S. F. Chagas for lab support, John Kastelic for manuscript editing, and beekeepers for supplying samples.

Authors’ contributions

KPG managed the project and resources, LSG led research, JLDD and DC performed UHPLC-MS/MS analyses, GCB performed statistical analyses, and DC collected samples, extracted and run the analytes, and formatted the paper. All authors participated in manuscript writing.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13592_2019_676_MOESM1_ESM.docx (86 kb)
ESM 1. (DOCX 85 kb)

References

  1. Anastassiades, M., Lehotay, S.J., Stajnbaher, D., Schenk, F.J. (2003) Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 86 (2), 412–431. Available at: http://lib3.dss.go.th/fulltext/Journa l/J.AOAC% 201999-2003/J.AOAC2003/v86n2p%28marapr%29/v86n2p412.pdf.PubMedGoogle Scholar
  2. Bernhardt, E.S., Rosi, E.J., Gessner, M.O. (2017) Synthetic chemicals as agents of global change. Front. Ecol. Environ., 15 (2), 84–90.  https://doi.org/10.1002/fee.1450.CrossRefGoogle Scholar
  3. Bombardi, L.M. (2017) Geografia do Uso de Agrotóxicos no Brasil e Conexões com a União Europeia. São Paulo: FFLCH – USP. 296p. Available at: https://www.larissabombardi.blog.br/livros. ISBN: 978-85-7506-310-1
  4. Bonmatin, J-M., Giorio, C., Girolami, V., Goulson, D., Kreutzweiser, D.P., Krupke, C., Liess, M., Long, E., Marzaro, M., Mitchell, E.A.D., Noome, D.A., Simon-Delso, N., Tapparo, A. (2015) Environmental fate and exposure, neonicotinoids and fipronil. Environ. Sci. Pollut. Res., 22 (1), 35–67.  https://doi.org/10.1007/s11356-014-3332-7.CrossRefGoogle Scholar
  5. Botías, C., David, A., Horwood, J., Abdul-Sada, A., Nicholls, E., Hill, E., Goulson, D. (2015) Neonicotinoid residues in wildflowers, a potential route of chronic exposure for bees. Environ. Sci. Technol., 49 (21), 12731–12740.  https://doi.org/10.1021/acs.est.5b03459.CrossRefPubMedGoogle Scholar
  6. Botías, C., David, A., Hill, E., Goulson, D. (2016) Contamination of wild plants near neonicotinoid seed treated crops, and implications for non-target insects. Sci. Total Environ., 566–567 (6), 269–278.  https://doi.org/10.1016/l.scitotenv.2016.05.065.CrossRefPubMedGoogle Scholar
  7. Botías, C., David, A., Hill, E., Goulson, D. (2017) Quantifying exposure of wild bumblebees to mixture of agrochemicals in agricultural and urban landscapes. Environ. Pollut., 222, 73–82.  https://doi.org/10.1016/j.envpol.2017.01.001.CrossRefPubMedGoogle Scholar
  8. Brasil. (1989) Lei Federal n° 7.802, de 11 de julho de 1989. Available at: http://www.planalto.gov.br/ccivil_03/LEIS/L7802.htm
  9. Brunet, J-L., Badiou, A., Belzunces, L.P. (2005) In vivo metabolic fate of [14C]-acetamiprid in six biological compartments of the honeybee, Apis mellifera L. Pest Manag. Sci., 61 (8), 742–748.  https://doi.org/10.1002/ps.1046.CrossRefPubMedGoogle Scholar
  10. Burrows, H.D., Canle, L.M., Santaballa, J.A., Steenken, S. (2002) Reaction pathways and mechanisms of photo degradation of pesticides. J. Photochem. Photobiol. B Biol., 67 (2), 71–108.  https://doi.org/10.1016/S1011-1344(02)00277-4.CrossRefGoogle Scholar
  11. Byrne, F.J., Toscano, N.C. (2006) Uptake and persistence of imidacloprid in grapevines treated by chemigation. Crop Prot., 25 (8), 831–834.  https://doi.org/10.1016/j.cropro.2005.11.004.CrossRefGoogle Scholar
  12. Casida, J., Durkin, K. (2013) Neuroactive insecticides: targets, selectivity, resistance and secondary effects. Annu. Rev. Entomol., 58, 99–117.  https://doi.org/10.1146/annurev-ento-120811-153645.CrossRefGoogle Scholar
  13. Castilhos, D., Bergamo, G.C., Gramacho, K.P., Gonçalves, L.S. (2019) Colony losses in Brazil: a 5-year online survey. Apidologie, online version.  https://doi.org/10.1007/s13592-019-00642-7.
  14. Castillo-Diaz, J.M., Martin-Laurent, F., Beguet, J., Nogales, R., Romero, E. (2017) Fate and effect of imidacloprid on vermicompost-amended soils under dissimilar conditions: risk for soil functions, structure, and bacterial abundance. Sci. Total Environ., 579 (6), 1111–1119.  https://doi.org/10.1016/j.scitotenv.2016.11.082.CrossRefPubMedGoogle Scholar
  15. Castle, S.J., Byrne, F.J., Bi, J.L., Toscano, N.C. (2005) Spatial and temporal distribution of imidacloprid and thiamethoxam in citrus and impact on Homalodisca coagulata populations. Pest Manag. Sci., 61 (1), 75–84.  https://doi.org/10.1002/ps.949.CrossRefPubMedGoogle Scholar
  16. Chagnon M., Kreutzweiser, D., Mitchell, E.A.D., Morrissey, C.A., Noome, D.A., Van Der Sluijs, J.P. (2015) Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environ. Sci. Pollut. Res., 22 (1), 119–134.  https://doi.org/10.1007/s11356-014-3277-x.CrossRefGoogle Scholar
  17. Chauzat, M.P., Carpentier, P., Martel, A.C., Bougeard, S., Cougoule, N., Porta, P., Lachaize, J., Madec, F., Aubert, M., Faucon, J.P. (2009) Influence of pesticide residues on honeybee (Hymenoptera: apidae) colony health in France. Environ. Entomol., 38 (3), 514–423.  https://doi.org/10.1603/022.038.0302.CrossRefPubMedGoogle Scholar
  18. David, A., Botías, C., Abdul-Sada, A., Goulson, D. (2015) Sensitive determination of mixtures of neonicotinoid and fungicide residues in pollen and single bumblebees using a scaled down QuEChERS method for exposure assessment. Anal. Bioanal. Chem., 407 (26), 8151–8162.  https://doi.org/10.1007/s00216-015-8986-6.CrossRefPubMedGoogle Scholar
  19. DEFRA – Department for Environment Food and Rural Affairs. (2014) Evidence project final report: interpretation of pesticide residues in honeybees. Available at: http://randd.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None&ProjectID=18321
  20. dos Santos C.F., Otesbelgue, A., Blochtein, B. (2018) The dilemma of agricultural pollination in Brazil: Beekeeping growth and insecticide use. PLoS ONE, 13 (7), e0200286.  https://doi.org/10.1371/journal.pone.0200286.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Douglas, M.R., Tooker, J.F. (2015) Large-scale deployment of seed treatments has driven rapid increase in use of neonicotinoids insecticides and preemptive pest management in US field crops. Environ. Sci. Technol., 49 (8), 5088–5097.  https://doi.org/10.1021/es506141g.CrossRefPubMedGoogle Scholar
  22. EFSA - European Food Safety Authority. (2016a) Conclusion on the peer review of the pesticide risk assessment for the active substance imidacloprid in light of confirmatory data submitted. EFSA J., 14 (11), e4607, 39p.  https://doi.org/10.2903/j.efsa.2016.4607.CrossRefGoogle Scholar
  23. EFSA - European Food Safety Authority. (2016b) Conclusion on the peer review of the pesticide risk assessment for the active substance clothianidin in light of confirmatory data submitted. EFSA J., 14 (11), e4606, 34p.  https://doi.org/10.2903/j.efsa.2016.4606.CrossRefGoogle Scholar
  24. EU-Lex. Official Journal of the European Union. (2009) Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for Community action to achieve the sustainable use of pesticides. Available at: http://data.europa.eu/eli/dir/2009/128/oj
  25. European Commission. (2017) Guidance document on analytical control and method validation procedures for pesticide residues and analysis in food and feed -SANTE/11813/2017, rev. 0. Available at: https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_mrl_guidelines_wrkdoc_2017-11813.pdf
  26. Fazekas, B., Láng, M.W., Déakné, P.P., Csaba, G., Orosz, E. (2012) Pesticide poisoning of honeybees between 2007 and 2011. Magyar Allatorvosok Lapja, 134 (4), 213–220. ISSN:0025004X.Google Scholar
  27. Gonçalves, L.S. (2012a) O desaparecimento das abelhas, suas causas, consequências e o risco dos neonicotinóides para o agronegócio. Mensagem Doce, 117, 2–12. Available at: http://www.apacame.org.br/mensagemdoce/117/artigo1.htm Google Scholar
  28. Gonçalves, L.S. (2012b) Consequências do desaparecimento (CCD) das abelhas no agronegócio apícola internacional e em especial no Brasil. Annals of Encontro sobre Abelhas de Ribeirão Preto, 10. (CD-ROM version), p. 24–25.Google Scholar
  29. Gonçalves, L.S., Castilhos, D. (2015a) O impacto causado na apicultura e meliponicultura pelo uso indiscriminado de pesticidas, identificado pelo aplicativo BEE ALERT e o declínio dos polinizadores (abelhas) no Brasil. In: Encontro Sobre Abelhas, 11. Ribeirão Preto, SP, Brasil. Anais do… Ribeirão Preto, USP-RP, p. 60.Google Scholar
  30. Gonçalves, L.S., Castilhos, D. (2015b) Application of the electronic device "BEE ALERT" for registering death of honeybees, stingless bees in general and disappearance of honey bees (CCD) in Brazil. In: International Apicultural Congress, 44. Daejeon, Korea. Scientific Program Abstracts. Annals of… Daejeon: Apimondia, p. 218.Google Scholar
  31. Google Earth. (2017) Geo-locator Software, version: 7.1.7.2602. Available at: https://www.google.com.br/earth/download/ge/agree.html.
  32. Hladik, M.L., Vandever, M., Smalling, K.L. (2016) Exposure of native bees foraging in an agricultural landscape to current-use pesticides. Sci. Total Environ., 542, 469–477.  https://doi.org/10.1016/j.scitotenv.2015.10.077.CrossRefPubMedGoogle Scholar
  33. INCA – Instituto Nacional de Combate ao Câncer. (2015) Posicionamento do Instituto Nacional de Câncer José de Alencar Gomes da Silva acerca dos agrotóxicos. Available at: http://www1.inca.gov.br/inca/Arquivos/comunicacao/posicionamento_do_inca_sobre_os_agrotoxicos_06_abr_15.pdf
  34. Kiljanek, T., Niewiadowska, A., Semeniuk, S., Gaweł, M., Borzęcka, M., Posyniak, A. (2016a) Multi-residue method for the determination of pesticides and pesticides metabolites in honeybees by liquid and gas chromatography coupled with tandem mass spectrometry–Honeybee poisoning incidents. J. Chromatogr. A, 1435, 100–114.  https://doi.org/10.1016/j.chroma.2016.01.045.
  35. Kiljanek, T., Niewiadowska, A., Posyniak, A. (2016b) Pesticide poisoning of honeybees: a review of symptoms, incident classification and causes of poisoning. J. Apic. Sci., 60 (2), 5–24.  https://doi.org/10.1515/jas-2016-0024.CrossRefGoogle Scholar
  36. Kiljanek, T., Niewiadowska, A., Gaweł, M., Semeniuk, S., Borzęcka, M., Posyniak, A., Pohorecka, K. (2017) Multiple pesticide residues in live and poisoned honeybees – Preliminary exposure assessment. Chemosphere, 175 (5), 36–44.  https://doi.org/10.1016/j.chemosphere.2017.02.028.CrossRefPubMedGoogle Scholar
  37. Köhler, H-R., Triebskorn, R. (2013) Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond? Science, 341 (6147), 759–765.  https://doi.org/10.1126/science.1237591.CrossRefGoogle Scholar
  38. Lambert, O., Piroux, M., Puyo, S., Thorin, C., L’hostis, M., Wiest, L., Buleté, A., Delbac, F., Pouliquen, H. (2013). Widespread occurrence of chemical residues in beehive matrices from apiaries located in different landscapes of western France. PLoS ONE, 8 (6), e67007.  https://doi.org/10.1371/journal.pone.0067007.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Laurino, D., Porporato, M., Patetta, A., Manino, A. (2011) Toxicity of neonicotinoid insecticides to honey bees: laboratory tests. Bull. Insectol., 64 (1), 107–113. Available at: http://www.bulletinofinsectology.org/pdfarticles/vol64-2011-107-113laurino.pdf.Google Scholar
  40. Lu, C., Warchol, K.M., Callahan, R.A. (2014) Sub-lethal exposure to neonicotinoids impaired honeybees winterization before proceeding to colony collapse disorder. Bull. Insectol., 67 (1), 125–130. Available at: http://www.bulletinofinsectology.org/pdfarticles/vol67-2014-125-130lu.pdf.
  41. Maini, S., Medrzycki, P., Porrini, C. (2010) The puzzle of honeybee losses: a brief review. Bull. Insectol., 63 (1), 153–160. Available at: http://www.bulletinofisecto logy.org/pdfarticles/vol63-2010-153-160maini.pdf.Google Scholar
  42. Marrs, T.C. (1993) Organophosphate poisoning. Pharmacol. Ther., 58 (1), 51–66.  https://doi.org/10.1016/0163-7258(93)90066-M.CrossRefPubMedGoogle Scholar
  43. Meredith, R.H., Heatherington, P.J., Morris, D.B. (2002) Clothianidin, a new chloronicotinyl seed treatment for use on sugar beet and cereals: field trial experiences from Northern Europe. In: British Crop Protection Council, pp. 691–696. Available at: http://www.cabdirect.org/abstracts/20033026728.html
  44. Mullin, C.A., Frazier, M., Frazier, J.L., Ashcraft, S., Simonds, R., Vanengelsdorp, D., Pettis, J.S. (2010) High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS ONE, 5 (3), e9754, 1–19.  https://doi.org/10.1371/journal.pone.0009754.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Nauen, R., Ebbinghaus-Kintscher, U., Salgado, V.L., Kaussmann, M. (2003) Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects and plants. Pestic. Biochem. Physiol., 76 (2), 55–69.  https://doi.org/10.1016/s0048-3575(03)00065-8.CrossRefGoogle Scholar
  46. Pareja, L., Colazzo, M., Pèrez-Parada, A., Nieli, S., Carrasco-Letelier, L., Besil, N., Cesio, M.V., Heizen, H. (2011) Detection of pesticides in active and depopulated beehives in Uruguay. Int. J. Environ. Res. Public Health, 8, 3844–3858.  https://doi.org/10.3390/ijerph8103844.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Pettis, J.S., Lichtenberg, E.M., Andree, M., Stitzinger, J., Rose, R., Vanengelsdorp, D. (2013) Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PLoS ONE, 8 (7), e70182.  https://doi.org/10.1371/journal.pone.0070182.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Pignati, W.A., de Souza e Lima, F.A.N, de Lara, S.S., Correa, M.L.M., Barbosa, J.R., Costa Leão, L.H., Pignatti, M.G. (2017) Spatial distribution of pesticide use in Brazil: a strategy for Health Surveillance. Ciência & Saúde Coletiva, 22 (10), 3281–3293.  https://doi.org/10.1590/1413-812320172210.17742017.CrossRefGoogle Scholar
  49. Pires, C.S.S., Pereira, F.M., Lopes, M.T.R., Nocelli, R.C.F., Malaspina, O., Pettis, J.S., Teixeira, E.W. (2016) Enfraquecimento e perda de colônias de abelhas no Brasil: há casos de CCD? Pesq. Agrop. Brasileira, 51 (5), 422–442.  https://doi.org/10.1590/S0100-204X2016000500003.CrossRefGoogle Scholar
  50. Pisa, L.W., Amaral-Rogers, V., Belzunces, L.P., Bonmatin, J-M., Downs, C.A., Goulson, D., Kreutzweiser, D.P., Krupke, C., Liess, M., Mcfield, M., Morrissey, C.A., Noome, D.A., Settele, J., Simon-Delso, N., Stark, J.D., Van Der Sluijs, J.P., Van Dyck, H., Wiemers, M. (2015) Effects of neonicotinoids and fipronil on non-target invertebrates. Environ. Sci. Pollut. Res., 22 (1), 68–102.  https://doi.org/10.1007/s11356-014-3471-x.CrossRefGoogle Scholar
  51. Pisa, L.W., Goulson, D., Yang, E-C., Gibbons, D., Sánchez-Bayo, F., Mitchell, E., Aebi, A., Van Der Sluijs, J., Macquarrie, C.J.K., Giorio, C., Long, E.Y., Mcfield, M., Van Lexmond, M.B., Bonmatin, J-M. (2017) An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems. Environ. Sci. Pollut. Res. (online version), 1–49.  https://doi.org/10.1007/s11356-017-0341-3.
  52. Pistorius, J., Wehner, A., Kriszan, M., Bargen, H., Knäbe, S., Klein, O., Frommberger, M., Stähler, M., Heimbach, U. (2015) Application of predefined doses of neonicotinoid containing dusts in field trails and acute effects on honey bees. Bull. Insectol., 68 (2), 161–172. Available at: http://www.bulletinofinsectology.org/ pdfarticles/vol68-2015-161-172pistorius.pdf.Google Scholar
  53. Pohorecka, K., Szczesna, T., Witek, M., Miszczak, A., Sikorski, P. (2017) The exposure of honeybees to pesticide residues in the hive environment with regard to winter colony losses. J. Apic. Sci., 61 (1), 105–125.  https://doi.org/10.1515/JAS-2017-0013.CrossRefGoogle Scholar
  54. PPDB – Pesticides Properties Database. (2016) Online version 7.0. Hatfield: University of Hertfordshire. Available at: http://sitem.herts.ac.uk/aeru/ppdb/en/index.htm.Google Scholar
  55. Rigotto, R.M., Vasconcelos, D.P., Rocha, M.M. (2014) Uso de agrotóxicos no Brasil e problemas para a saúde pública. Cad. Saúde Pública, Rio de Janeiro, 30 (7), 1–3.  https://doi.org/10.1590/0102-311XPE020714.CrossRefGoogle Scholar
  56. Rosa, A.S., Price, R.I., Calimam, M.J.F., Queiroz, E.P., Blochtein, B., Pires, C.S.S., Imperatriz-Fonseca, V.L. (2015) The stingless bee species, Scaptotrigona aff. depilis, as a potential indicator of environmental pesticide contamination. Environ. Toxicol. Chem., 34 (8), 1851–1853.  https://doi.org/10.1002/etc.2998.CrossRefGoogle Scholar
  57. Sanches, A.L., Felippe, M.R., Carmo, A.U., Rugno, G.R., Yamamoto, P.T. (2009) Eficiência de inseticidas sistêmicos, aplicados em mudas cítricas, em pré-plantio, no controle de Diaphorina citri (Kuwayama) (Hemiptera: Psyllidae). Bioassay, 4 (6), 1–7.  https://doi.org/10.14295/BA.v4.0.29.CrossRefGoogle Scholar
  58. Sánchez-Bayo, F., Goka, K. (2014) Pesticide residues and bees: a risk assessment. PLoS ONE, 9 (4), e99482.  https://doi.org/10.1371/journal.pone.0094482.CrossRefGoogle Scholar
  59. Schaafsma, A., Limay-Rios, V., Xue, Y., Smith, J., Baute, T. (2016) Field-scale examination of neonicotinoid insecticide persistence in soil as a result of seed treatment use in commercial maize (corn) fields in southwestern Ontario. Environ. Toxicol. Chem., 35 (2), 295–302.  https://doi.org/10.1002/etc.3231.CrossRefPubMedGoogle Scholar
  60. Silva, I.P., Oliveira, F.A.S., Pedroza, H.P., Gadelha, I.C.N., Melo, M.M., Soto-Blanco, B. (2015) Pesticide exposure of honeybees (Apis mellifera) pollinating melon crops. Apidologie, 46 (6), 703–715.  https://doi.org/10.1007/s13592-015-0360-3.CrossRefGoogle Scholar
  61. Simon-Delso, N., Amaral-Rogers, V., Belzunces, L.P., Bonmatin, J-M., Chagnon, M., Downs, C., Furlan, L., Gibbons, D.W., Giorio, C., Girolami, V., Goulson, D., Kreutzweiser, D.P., Krupke, C.H., Liess, M., Long, E., Mcfield, M., Mineau, P., Mitchell, E.A., Morrissey, C.A., Noome, D.A., Pisa, L., Settele, J., Stark, J.D., Tapparo, A., Van Dyck, H., Van Praagh, J., Van Der Sluijs, J.P., Whitehorn, P.R., Wiemers, M. (2015) Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res., 22 (1), 5–34.  https://doi.org/10.1007/s11356-014-3470-y.CrossRefGoogle Scholar
  62. Simon-Delso, N., San Martin, G., Bruneau, E., Delcourt, C., Hautier, L. (2017) The challenges of predicting pesticide exposure of honeybees at landscape levels. Sci. Rep., 7 (3801), 1–10.  https://doi.org/10.1038/s41598-017-03467-5 CrossRefGoogle Scholar
  63. Spadotto, C.A. (2006) Avaliação de riscos ambientais de agrotóxicos em condições brasileiras. Jaguariúna: Embrapa Meio Ambiente. 1st online edition, 20p. Available at: https://www.agencia.cnptia.embrapa.br/Repositorio/documentos_58ID-bpKAg6 MWXm.pdf. Access 15 July 2017. ISSN: 1516-4691
  64. Spurgeon, D., Hesketh, H., Lahive, E., Svendsen, C., Baas, J., Robinson, A., Horton, A., Heard, M. (2016) Chronic oral lethal and sub-lethal toxicities of different binary mixtures of pesticides and contaminants in bees (Apis mellifera, Osmia bicornis and Bombus terrestris). Centre for Ecology and Hydrology. EFSA supporting publication 2016, EN-1076. 66p. Available at: http://onlinelibrary.wiley.com/store/10.2903/sp.efsa.2016.EN-1076/asset/efs31076e.pdf;jsessionid=9D4012A1CA30623573CF89E5489EEBFC.f01t02?v=1&t=jc2k03dy&s=78bba77e1d8c8d4ea6a8e4d6b9090b1352efeaf8
  65. Stevens, S., Jenkins, P. (2014) Heavy costs: weighing the value of neonicotinoid insecticides in agriculture. In: Center for food safety. 20 p. Available at: http://www.centerforfoodsafe ty.org/files/neonic-efficacy_digital_29226.pdf
  66. Suchail, S., Guez, D., Belzunces, L.P. (2000) Characteristics of imidacloprid toxicity in two Apis mellifera subspecies. Environ. Toxicol. Chem., 19 (7), 1901–1905.  https://doi.org/10.1002/etc.5620190726.CrossRefGoogle Scholar
  67. Traynor, K.S., Pettis, J.S., Tarpy, D.R., Mullin, C.A., Frazier, J.L., Frazier, M., vanEnngelsdorp, D. (2016) In-hive pesticide exposome: assessing risks to migratory honeybees to in-hive pesticide contamination in the Eastern United States. Sci. Rep., 6, 33207.  https://doi.org/10.1038/srep.33207.CrossRefPubMedPubMedCentralGoogle Scholar
  68. UNESP, UFSCAR. (2018) Mapeamento de abelhas participativo. In: SINDIVEG: Projeto Colmeia Viva. 22p. Available at: http://projetocolmeiaviva.org.br/wpcontent/uploads/2018/10/Relatorio_final_WEB-30abr2018.pdf
  69. Wood, T., Goulson, D. (2017) The environmental risks of neonicotinoids pesticides: a review of the evidence post-2013. Paris: Greenpeace France. 7-8. 87p. Available at: https://www.greenpeace.ch/wp-content/uploads/2017/01/neonicotinoid-pesticides_final_single_web_FINAL.pdf

Copyright information

© INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Programa de Pós-graduação em Ciência AnimalUniversidade Federal Rural do Semi-ÁridoMossoróBrazil
  2. 2.DCAFUniversidade Federal Rural do Semi-ÁridoMossoróBrazil
  3. 3.DCMEUniversidade Federal Rural do Semi-ÁridoMossoróBrazil
  4. 4.FFCLUniversidade de São PauloRibeirão PretoBrazil

Personalised recommendations