pp 1–15 | Cite as

Estimating the density of honey bee (Apis mellifera) colonies using trapped drones: area sampled and drone mating flight distance

  • Patsavee UtaipanonEmail author
  • Michael J. Holmes
  • Nadine C. Chapman
  • Benjamin P. Oldroyd
Original article


Reliable information on Western honey bee colony density can be important in a variety of contexts including biosecurity responses, determining the sufficiency of pollinators in an agroecosystem and in determining the impacts of feral honey bees on ecosystems. Indirect methods for estimating colony density based on genetic analysis of sampled males are more feasible and cost efficient than direct observation in the field. Microsatellite genotypes of drones caught using Williams drone trap are used to identify the number of colonies (queens) that contributed drones to a mating lek. From the number of colonies, the density of colonies can be estimated based on assumptions about the area from which drones are drawn. This requires reliable estimates of drone flight distance. We estimated average minimum flight distance of drones from feral colonies along two 7-km transects in Southern NSW, Australia. We found that drones from feral colonies flew at least 3.5 km to drone traps. We then determined that the maximum distance that drones flew from a focal colony to a trap was 3.75 km. We conclude that a drone trap samples an area of 44 km2, and that this area should be used to convert estimated colony numbers to colony densities. This area is much greater than has been previously assumed. The densities of honey bee colonies in Grong Grong and Currawarna, NSW, are 1.38–2.73 and 1.31–3.06 colonies/km2 respectively.


drone flight range colony density mating behaviour feral honey bee 



We thank Frank Malfroy and Jenny Douglas for a very nice dinner and extraordinary logistical help and advice at the Lyndhurst site. Madeleine Beekman helped with drone trapping. Lea Ubdulkhalek helped with sample processing.

Funding information

This project was financially supported by AgriFutures Australia, though funding from the Australian Government Department of Agriculture as part of its Rural R&D for Profit program, with further support from Horticulture Innovation Australia, the Almond Board of Australia, Lucerne Australia, Costa Group, and Raspberries and Blackberries Australia.

Supplementary material

13592_2019_671_MOESM1_ESM.xlsx (14 kb)
Supplementary table S1. Distribution of drones among sites from families in which drone frequency was above the 90th percentile (XLSX 14 kb)
13592_2019_671_MOESM2_ESM.xlsx (382 kb)
Supplementary table S2.1. Drone genotypes from transect A. Supplementary Table S2.2 Drone genotypes from transect B (XLSX 381 kb)
13592_2019_671_MOESM3_ESM.xlsx (17 kb)
Supplementary table S3. Genotypes of drone pupa collect from the experimental colony, reconstructed queen genotype, and genotypes of drones collected at 4000 m far from the experimental hive. (XLSX 17 kb)
13592_2019_671_MOESM4_ESM.mp4 (6.7 mb)
Supplementary video file. Catching drones in a Williams drone trap (MP4 6888 kb)


  1. Allen M.D. (1963) Drone production in honey-bee colonies (Apis mellifera L.). Nature 199(4895): 789–790.Google Scholar
  2. Arundel J., B.P. Oldroyd, S. Winter. (2012) Modelling honey bee queen mating as a measure of feral colony density. Ecol. Model. 247: 48–57.Google Scholar
  3. Arundel J., B.P. Oldroyd, S. Winter. (2013) Modelling estimates of honey bee (Apis spp.) colony density from drones. Ecol. Model. 267: 1–10.Google Scholar
  4. Bailey L., B.V. Ball. (1991) Honey bee pathology. Academic Press, London.Google Scholar
  5. Baudry E., M. Solignac, L. Garnery, M. Gries, J.M. Cornuet, et al. (1998) Relatedness among honeybees (Apis mellifera) of a drone congregation. Proc. R. Soc. Lond. B Biol. Sci. 265(1409): 2009–2014.Google Scholar
  6. Brockmann A., D. Dietz, J. Spaethe, J. Tautz. (2006) Beyond 9-ODA: sex pheromone communication in the european honey bee Apis mellifera L. J. Chem. Ecol. 32(3): 657–667.Google Scholar
  7. Butler C.G., R.K. Callow, N.C. Johnston. (1962) The isolation and synthesis of queen substance, 9-oxodec-trans-2-enoic acid, a honeybee pheromone. Proc. R. Soc. Lond. B Biol. Sci. 155(960): 417–432.Google Scholar
  8. Butz Huryn V.M., M. Henrik. (1995) An assessment of the contribution of honey bees (Apis mellifera) to weed reproduction in New Zealand protected natural areas. N. Z. J. Ecol. 19: 111–122.Google Scholar
  9. Chapman N.C., R. Dos Santos Cocenza, B. Blanchard, L.M. Nguyen, J. Lim, et al. (2019) Genetic diversity in the progeny of commercial Australian queen honey bees (Hymenoptera: Apidae) produced in autumn and early spring. J. Econ. Entomol. 112(1):33–39.Google Scholar
  10. Crane E. (1990) Bees and beekeeping: science, practice, and world resources. Cornell University Press, Ithaca, N.Y.Google Scholar
  11. Cunningham S.A., F. FitzGibbon, T.A. Heard. (2002) The future of pollinators for Australian agriculture. Aust. J. Agric. Res. 53(8): 893–900.Google Scholar
  12. Cunningham S.A., A. Fournier, M.J. Neave, D. Le Feuvre, T. Diekötter. (2016) Improving spatial arrangement of honeybee colonies to avoid pollination shortfall and depressed fruit set. J. Appl. Ecol. 53(2): 350–359.Google Scholar
  13. Currie R.W. (1987) The biology and behaviour of drones. Bee World 68(3): 129–143.Google Scholar
  14. Dick C.W. (2001) Genetic rescue of remnant tropical trees by an alien pollinator. Proc. Roy. Soc. B. 268(1483): 2391–2396.Google Scholar
  15. Ding G., H. Xu, B.P. Oldroyd, R.S. Gloag. (2017) Extreme polyandry aids the establishment of invasive populations of a social insect. Heredity 119(5): 381–387.Google Scholar
  16. Gary N.E. (1962) Chemical mating attractants in the queen honey bee. Science 136(3518): 773–774.Google Scholar
  17. Goulson D. (2003) Effects of introduced bees on native ecosystems. Annu. Rev. Ecol. Evol. Syst. 34(1): 1–26.Google Scholar
  18. Gries M., N. Koeniger. (1996) Straight forward to the queen: pursuing honeybee drones (Apis mellifera L.) adjust their body axis to the direction of the queen. J. Comp. Physiol., A 179(4): 539–544.Google Scholar
  19. Gross C. (2001) The effect of introduced honeybees on native bee visitation and fruit-set in Dillwynia juniperina (Fabaceae) in a fragmented ecosystem. Biol. Cons. 102(1): 89–95.Google Scholar
  20. Gross C.L., D. Mackay. (1998) Honeybees reduce fitness in the pioneer shrub Melastoma affine (Melastomataceae). Biol. Cons. 86(2): 169–178.Google Scholar
  21. Hanley M.E., M. Franco, S. Pichon, B. Darvill, D. Goulson. (2008) Breeding system, pollinator choice and variation in pollen quality in British herbaceous plants. Funct. Ecol. 22(4): 592–598.Google Scholar
  22. Hansen D.M., J.M. Olesen, C.G. Jones. (2002) Trees, birds and bees in Mauritius: exploitative competition between introduced honey bees and endemic nectarivorous birds? J. Biogeogr. 29(5/6): 721–734.Google Scholar
  23. Hinson E.M., M. Duncan, J. Lim, J. Arundel, B.P. Oldroyd. (2015) The density of feral honey bee (Apis mellifera) colonies in South East Australia is greater in undisturbed than in disturbed habitats. Apidologie 46(3): 403–413.Google Scholar
  24. Jaffé R., V. Dietemann, M.H. Allsopp, C. Costa, R.M. Crewe, et al. (2010) Estimating the density of honeybee colonies across their natural range to fill the gap in pollinator decline censuses. Conserv. Biol. 24(2): 583–593.Google Scholar
  25. Jensen A.B., K.A. Palmer, N. Chaline, N.E. Raine, A. Tofilski, et al. (2005) Quantifying honey bee mating range and isolation in semi-isolated valleys by DNA microsatellite paternity analysis. Conserv. Genet. 6(4): 527–537.Google Scholar
  26. Klein A.-M., I. Steffan-Dewenter, T. Tscharntke. (2003) Bee pollination and fruit set of Coffea arabica and C. canephora (Rubiaceae). Am. J Bot. 90(1): 153–157.Google Scholar
  27. Klein A.-M., B.E. Vaissière, J.H. Cane, I. Steffan-Dewenter, S.A. Cunningham, et al. (2007) Importance of pollinators in changing landscapes for world crops. Proc. Roy. Soc. B. 274(1608): 303–313.Google Scholar
  28. Koeniger G. (1990) The role of the mating sign in honey bees, Apis mellifera L.: does it hinder or promote multiple mating? Anim. Behav. 39(3): 444–449.Google Scholar
  29. Koeniger N., G. Koeniger, H. Pechhacker. (2005) The nearer the better? Drones (Apis mellifera) prefer nearer drone congregation areas. Insectes. Soc. 52(1): 31–35.Google Scholar
  30. Loper G.M., W.W. Wolf, O.R. Taylor. (1987) Detection and mornitoring of honeybee drone congregration areas by radar. Apidologie 18(2): 163–172.Google Scholar
  31. Loper G.M., W.W. Wolf, O.R. Taylor. (1992) Honey bee drone flyways and congregation areas: radar observations. J. Kans. Entomol. Soc. 65(3): 223–230.Google Scholar
  32. Magrach A., J.P. Gonzalez-Varo, M. Boiffier, M. Vila, I. Bartomeus. (2017) Honeybee spillover reshuffles pollinator diets and affects plant reproductive success. Nat. Ecol. Evol. 1(9): 1299–1307.Google Scholar
  33. Mattila H.R., T.D. Seeley. (2007) Genetic diversity in honey bee colonies enhances productivity and fitness. Science 317(5836): 362–364.Google Scholar
  34. Moritz R.F.A., V. Dietemann, R. Crewe. (2008) Determining colony densities in wild honeybee populations (Apis mellifera) with linked microsatellite DNA markers. J. Insect Conserv. 12(5): 455–459.Google Scholar
  35. Moritz R.F.A., S. Härtel, P. Neumann. (2005) Global invasions of the western honeybee (Apis mellifera) and the consequences for biodiversity. Ecoscience 12(3): 289–301.Google Scholar
  36. Moritz R.F.A., F.B. Kraus, A. Huth-Schwarz, S. Wolf, C.A.C. Carrillo, et al. (2013) Number of honeybee colonies in areas with high and low beekeeping activity in Southern Mexico. Apidologie 44(1): 113–120.Google Scholar
  37. Moritz R.F.A., F.B. Kraus, P. Kryger, R.M. Crewe. (2007) The size of wild honeybee populations (Apis mellifera) and its implications for the conservation of honeybees. J. Insect Conserv. 11(4): 391–397.Google Scholar
  38. Morse R.A., R. Nowogrodzki. (1990) Honey bee pests, predators, and diseases. Cornell University Press, Ithaca.Google Scholar
  39. Oertel E. (1956) Observations on the flight of drone honey bees. Ann. Entomol. Soc. Am. 49(5): 497–500.Google Scholar
  40. Oldroyd B.P., J.H. Fewell. (2007) Genetic diversity promotes homeostasis in insect colonies. Trends Ecol. Evol. 22(8): 408–413.Google Scholar
  41. Oldroyd B.P., S. Lawler, R.H. Crozier. (1994) Do feral honey bees (Apis mellifera) and regent parrots (Polytelis anthopeplus) compete for nest sites? Austral Ecol. 19(4): 444–450.Google Scholar
  42. Oldroyd B.P., E.G. Thexton, S.H. Lawler, R.H. Crozier. (1997) Population demography of Australian feral bees (Apis mellifera). Oecologia 111(3): 381–387.Google Scholar
  43. Page R.E. (1980) The evolution of multiple maiting behaviour by honey bee queens (Apis mellifera L.). Genetics 96(1): 263–273.Google Scholar
  44. Page R.E., C.Y.S. Peng. (2001) Aging and development in social insects with emphasis on the honey bee, Apis mellifera L. Exp. Gerontol. 36(4): 695–711.Google Scholar
  45. Palmer K.A., B.P. Oldroyd. (2000) Evolution of multiple mating in the genus Apis. Apidologie 31(2): 235–248.Google Scholar
  46. Paton D.C. (1993) Honeybees in the Australian environment. Bioscience 43(2): 95–103.Google Scholar
  47. Paton D.C. (1996) Overview of feral and managed honeybees in Australia, Canberra.Google Scholar
  48. Peer D. (1957) Further studies on the mating range of the honey bee, Apis mellifera L. Can. Entomol. 89(3): 108–110.Google Scholar
  49. Rinderer T.E., B.P. Oldroyd, S. Wongsiri, H.A. Sylvester, L.I.D. Guzman, et al. (1993) Time of drone flight in four honey bee species in south-eastern Thailand. J. Apic. Res. 32(1): 27–33.Google Scholar
  50. Ruttner F. (1988) Biogeography and taxonomy of honeybees. Springer Science & Business Media, Berlin, Germany.Google Scholar
  51. Ruttner F., H. Ruttner. (1966) Untersuchungen über die Flugaktivität und das Paarungsverhalten der Drohnen. III.—Flugweite und Flugrichtung der Drohnen. Z. Bienenforsch. 8: 332–354.Google Scholar
  52. Ruttner H. (1974) Drohnensammelplätze ein beispiel von paarungsverhalten bei Insekten. Anz. Schälingskde. Pflanzen-Umweltschutz 47: 39–42.Google Scholar
  53. Ruttner H. (1976) Untersuchungen über die flugaktivität und das paarungsverhalten der drohnen. VI.—Flug auf und über höhenrücken. Apidologie 7(4): 331–341.Google Scholar
  54. Ruttner H., F. Ruttner. (1972) Untersuchungen über die flugaktivität und das paarungsverhalten der drohnen. V.—Drohnensammelplätze und paarungsdistanz. Apidologie 3(3): 203–232.Google Scholar
  55. Saunders D.A., G.T. Smith, I. Rowley. (1982) The availability and dimensions of tree hollows that provide nest sites for cockatoos (Psttaciformes) in Western Australia. Aust. J. Wildl. 9: 541–546.Google Scholar
  56. Seeley T.D. (2016) Following the wild bees: the craft and science of bee hunting. Princeton University Press, Princeton and Oxford.Google Scholar
  57. Seeley T.D., D.R. Tarpy. (2007) Queen promiscuity lowers disease within honeybee colonies. Proc. Roy. Soc. B. 274(1606): 67–72.Google Scholar
  58. Simpson S., C. Gross, L. Silberbauer. (2005) Broom and honeybees in Australia: an alien liaison. Plant Biol. 7(5): 541–548.Google Scholar
  59. Solignac M., F. Mougel, D. Vautrin, M. Monnerot, J.-M. Cornuet. (2007) A third-generation microsatellite-based linkage map of the honey bee, Apis mellifera, and its comparison with the sequence-based physical map. Genome Biol. 8(4): R66.Google Scholar
  60. Solignac M., D. Vautrin, A. Loiseau, F. Mougel, E. Baudry, et al. (2003) Five hundred and fifty microsatellite markers for the study of the honeybee (Apis mellifera L.) genome. Mol. Ecol Notes 3(2): 307–311.Google Scholar
  61. Spira T.P. (2001) Plant-pollinator interactions: a threatened mutualism with implications for the ecology and management of rare plants. Nat. Areas J. 21(1): 78–88.Google Scholar
  62. Szabo T.L. (1995) The production of drone comb and drone brood in honey bee colonies, Dadant & Sons, Hamilton, pp. 642–643.Google Scholar
  63. Taber R.D.S. (1964) Factors influencing the circadian flight rhythm of drone honey bees. Ann. Entomol. Soc. Am. 57(6): 769–775.Google Scholar
  64. Tarpy D.R., R. Nielsen, D.I. Nielsen. (2004) A scientific note on the revised estimates of effective paternity frequency in Apis. Insectes. Soc. 51(2): 203–204.Google Scholar
  65. Taylor O.R., G.A. Rowell. (1988) Drone abundance, queen flight distance, and the neutral mating model for the honey bee, Apis mellifera, Africanized honey bees and bee mites., Ellis Horwood, Chichester, UK, pp. 173–183.Google Scholar
  66. Utaipanon P., T.M. Schaerf, B.P. Oldroyd. (2019) Assessing the density of honey bee colonies at scales. Ecol. Entomol. 44:291–304.Google Scholar
  67. Walsh P.S., D.A. Metzger, R. Higuchi. (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques 10(4): 506–513.Google Scholar
  68. Wang J. (2004) Sibship reconstruction from genetic data with typing errors. Genetics 166(4): 1963–1979.Google Scholar
  69. Wang J. (2013) An improvement on the maximum likelihood reconstruction of pedigrees from marker data. Heredity 111(2): 165.Google Scholar
  70. Wenner A.M. (1989) Bee-lining and ecological research on Santa-cruz island, Dadant & Sons, Hamilton, pp. 808–809.Google Scholar
  71. Williams J.L. (1987) Wind-directed pheromone trap for drone honey-bees (Hymenoptera, Apidae). J. Econ. Entomol. 80(2): 532–536.Google Scholar
  72. Winston M.L. (1991) The biology of the honey bee. Harvard University Press, Cambridge, Mass.Google Scholar
  73. Winston M.L. (1992) Killer bees: The Africanized honey bee in the Americas. Harvard University Press, Cambridge, Mass.Google Scholar
  74. Wood M.S., R.L. Wallis. (1998) Potential competition for nest sites between feral European honeybees (Apis mellifera) and common brushtail possums (Trichosurus vulpecula). Aust. Mammal. 20: 377–388.Google Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Behaviour and Genetics of Social Insects Laboratory, Ecology and EvolutionUniversity of SydneySydneyAustralia

Personalised recommendations