, Volume 50, Issue 4, pp 542–552 | Cite as

Examining the nutritional value and effects of different floral resources in pumpkin agroecosystems on Bombus impatiens worker physiology

  • Erin D. TreanoreEmail author
  • Anthony D. Vaudo
  • Christina M. Grozinger
  • Shelby J. Fleischer
Original article


Floral enhancement schemes in agroecosystems are a common method to supplement bee dietary requirements, yet there is little information about how species used in these schemes influence bee physiology and how their nutritional value compares to the floral resources provided by the crop species. Here, we examined the pollen nutritional quality (macronutrient concentrations and protein:lipid ratio) of pumpkin (Cucurbita pepo, Cucurbitaceae), two species commonly used in enhancement schemes, Helianthus annuus (Asteraceae) and Crotalaria juncea (Fabaceae), a multifloral diet and an artificial diet. We tested effects of these diets on physiological characteristics of Bombus impatiens, a generalist pollinator. Bees performed best on real pollen diets, with consumption of C. juncea and multifloral pollen having the most pronounced effects on bee physiology. Our results underscore the importance of considering nutritional quality when selecting plant species for these schemes.


pollen nutrition bumble bee physiology floral rewards agroecosystems microcolonies 



The authors thank Project Integrated Crop Pollination. We thank Laura Russo for providing pollen used in the multifloral diets. We also thank Hannah Balko and Nick Krause for their technical assistance in the field.

Authors’ contribution

EDT: experimental design, performed experiments, data analysis, wrote manuscript.

ADV: conception of experiment, experimental design, data analysis, critical review.

CMG: conception of experiment, experimental design, critical review.

SJF: conception of experiment, data analysis, critical review.

All authors have given final approval to the version being published.

Funding information

This material is based upon work that is supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, under award number 2012-51181-20105, Developing Sustainable Pollination Strategies for U.S. Specialty Crops.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13592_2019_668_MOESM1_ESM.docx (14 kb)
ESM 1. (DOCX 14 kb)


  1. Aguila, J. R., Hoshizaki, D. K., & Gibbs, A. G. (2012) Contribution of larval nutrition to adult reproduction in Drosophila melanogaster. J. Exp. Biol. 216, 399–406.CrossRefPubMedGoogle Scholar
  2. Alaux, C., Ducloz, F., Crauser, D., & Le Conte, Y. (2010) Diet effects on honeybee immunocompetence. Biol. Lett., 6(4), 562–565.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Amsalem, E., Galbraith, D. A., Cnaani, J., Teal, P. E., & Grozinger, C. M. (2015a) Conservation and modification of genetic and physiological toolkits underpinning diapause in bumble bee queens. Mol. Ecol., 24(22), 5596-5615.CrossRefPubMedGoogle Scholar
  4. Amsalem, E., Grozinger, C. M., Padilla, M., & Hefetz, A. (2015b) The physiological and genomic bases of bumble bee social behavior. Adv. Insect Physio. (48) 37–93.CrossRefGoogle Scholar
  5. Artz, D. R., Hsu, C. L., & Nault, B. (2011) Influence of honey bee, Apis mellifera, hives, hives and field size on foraging activity of native bee species in pumpkin fields. Environ. Entomol. 40(5), 1144–1158.CrossRefPubMedGoogle Scholar
  6. Behmer, S. T., & Nes, W. D. (2003) Insect sterol nutrition and physiology: a global overview. Adv. Insect Physiol, 31, 1–72.CrossRefGoogle Scholar
  7. Brodschneider, R., & Crailsheim, K. (2010) Nutrition and health in honey bees. Apidologie, 41(3), 278–294.CrossRefGoogle Scholar
  8. Cane, J. H. (2016) Adult pollen diet essential for egg maturation by a solitary Osmia bee. J. Insect Physiol., 95, 105–109.CrossRefPubMedGoogle Scholar
  9. Carvalheiro, L. G., Seymour, C. L., Nicolson, S. W. & Veldtman, R. (2012) Creating patches of native flowers facilitates crop pollination in large agricultural fields: mango as a case study. J. Appl. Ecol., 49, 1373–1383.CrossRefGoogle Scholar
  10. Cnaani, J., Thomson, J.D., & Papaj D.R. (2006) Flower choice and learning in foraging bumble bees: effects of variation in nectar volume and concentration. Ethology, 112, 278–285.CrossRefGoogle Scholar
  11. Crailsheim, K., Schneider, L.H.W., Hrassnigg, N., Bühlmann, G., Broasch, U., et al. (1992) Pollen consumption and utilization in worker honey bees (Apis mellifera carnica): dependence on individual age and function. J. Insect Physiol.. 38, 409–419.CrossRefGoogle Scholar
  12. Di Pasquale, G., Salignon, M., Le Conte, Y., Belzunces, L. P., Decourtye, A. et al. (2013) Influence of pollen nutrition on honey bee health: do pollen quality and diversity matter? PLoS One, 8(8), e72016.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Duchateau, M. J. & H. H. W. Velthuis. (1989) Ovarian development and egg laying in workers of Bombus terrestris. Entomol. Exp. Appl. 51,199–213CrossRefGoogle Scholar
  14. Eckhardt, M., Haider, M., Dorn, S., & Müller, A. (2014) Pollen mixing in pollen generalist solitary bees: a possible strategy to complement or mitigate unfavorable pollen properties? J. Anim. Ecol., 83(3), 588–597.CrossRefPubMedGoogle Scholar
  15. Frias, B. E. D., Barbosa, C. D., & Lourenço, A. P. (2016) Pollen nutrition in honey bees (Apis mellifera): impact on adult health. Apidologie, 47(1), 15–25.CrossRefGoogle Scholar
  16. Génissel, A., Aupinel, P., Bressac, C., Tasei, J. N., & Chevrier, C. (2002) Influence of pollen origin on performance of Bombus terrestris micro-colonies. Entomol. Exp. Appl. 104(2–3), 329–336.CrossRefGoogle Scholar
  17. Goulson, D. (2010) Bumble bees: behavior, ecology, and conservation (No. Ed. 2). Oxford University Press. New York.Google Scholar
  18. Goulson, D., Lye, G. C., & Darvill, B. (2008) Decline and conservation of bumble bees. Annu. Rev. Entomol., 53, 191–208.CrossRefPubMedGoogle Scholar
  19. Hendriksma, H. P., & Shafir, S. (2016). Honey bee foragers balance colony nutritional deficiencies. Behav. Ecol. Sociobiol., 70(4), 509–517.CrossRefGoogle Scholar
  20. Leza, M., Watrous, K. M., Bratu, J., & Woodard, S. H. (2018) Effects of neonicotinoid insecticide exposure and monofloral diet on nest-founding bumblebee queens. Proc. R. Soc. Lond., 285(1880).Google Scholar
  21. McGrady (2018) Pollination services, colony abundances and population genetics of Bombus impatiens), Master Thesis, The Pennsylvania State University, 07/10/2018.Google Scholar
  22. Moerman, R., Vanderplanck, M., Roger, N., Declèves, S., Wathelet, B., et al. (2015) Growth rate of bumble bee larvae is related to pollen amino acids. J. Econ. Entomol., 109(1), 25–30.CrossRefPubMedGoogle Scholar
  23. Moerman, R., Vanderplanck, M., Fournier, D., Jacquemart, A.-L. & Michez, D. (2017) Pollen nutrients better explain bumble bee colony development than pollen diversity. Insect Conserv. Divers., 10, 171–179.CrossRefGoogle Scholar
  24. Nepi, M., Bini, L., Bianchi, L., Puglia, M., Abate, M. et al. (2011) Xylan-degrading enzymes in male and female flower nectar of Cucurbita pepo. Ann. Bot. 108, 521–527.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Nepi, M., Soligo, C., Nocentini, D., Abate, M., Guarnieri, M. et al. (2012) Amino acids and protein profile in floral nectar: much more than a simple reward. Flora, 207(7), 475–481.CrossRefGoogle Scholar
  26. Rasmont, P., Regali, A., Ings, T. C., Lognay, G., Baudart, E., et al. (2005) Analysis of pollen and nectar of Arbutus unedo as a food source for Bombus terrestris (Hymenoptera: Apidae). J. Econ. Entomol., 98(3), 656–663.CrossRefPubMedGoogle Scholar
  27. Raubenheimer, D., & Simpson, S. J. (2018) Nutritional ecology and foraging theory. Curr. Opin. Insect. Sci., 27, 38–45.CrossRefPubMedGoogle Scholar
  28. Regali A & Rasmont (1995) Nouvelles méthodes de test pour l’évaluation du régime alimentaire chez des colonies orphelines de Bombus terrestris (L) (Hymenoptera, Apidae). Apidologie, 26, 273–281.CrossRefGoogle Scholar
  29. Riddell, C. E., & Mallon, E. B. (2006) Insect psychoneuroimmunology: immune response reduces learning in protein starved bumblebees (Bombus terrestris). Brain Behav. Immun., 20(2), 135-138.CrossRefPubMedGoogle Scholar
  30. Roger, N., Michez, D., Wattiez, R., Sheridan, C., & Vanderplanck, M. (2017) Diet effects on bumblebee health. J. Insect Physiol., 96, 128–133.CrossRefPubMedGoogle Scholar
  31. Roulston T.H., & Cane J.H. (2000) Pollen nutritional content and digestibility for animals. Plant Syst. Evol., 222, 187–20.CrossRefGoogle Scholar
  32. Roulston, T.H., Cane, J.H., & Buchmann, S.L. (2000) What governs protein content of pollen: pollinator preferences, pollen-pistil interactions, or phylogeny? Ecol. Monogr., 70, 617–643.Google Scholar
  33. Ruedenauer, F. A., Spaethe, J., & Leonhardt, S. D. (2016) Hungry for quality—individual bumblebees forage flexibly to collect high-quality pollen. Behav. Ecol. Sociobiol. 70(8), 1209–1217.CrossRefGoogle Scholar
  34. Schmehl, D. R., Teal, P. E., Frazier, J. L., & Grozinger, C. M. (2014) Genomic analysis of the interaction between pesticide exposure and nutrition in honey bees (Apis mellifera). J. Insect Physiol., 71, 177–190.CrossRefPubMedGoogle Scholar
  35. Shpigler H, et al. (2013) Social influences on body size and developmental time in the bumblebee Bombus terrestris. Behav. Ecol. Sociobiol. 67(10) 1601–1612CrossRefGoogle Scholar
  36. Sibbald, E.D, Plowright, C.M.S. (2013) On the relationship between aggression and reproduction in pairs of orphaned worker bumblebees (Bombus impatiens). Insect. Soc. 60, 23–30CrossRefGoogle Scholar
  37. Sutcliffe, G. H., & Plowright R. C. (1988) The effects of food supply on adult size in the bumble bee Bombus terricola Kirby (Hymenoptera: Apidae). Can. Entomol., 120, 1051–1058.CrossRefGoogle Scholar
  38. Sutcliffe, G.H, & Plowright, R.C. (1990) The effects of pollen availability on development time in the bumble bee Bombus terricola K. (Hymenoptera: Apidae). Can. J. Zool., 68,1120-1123.CrossRefGoogle Scholar
  39. Tallamy, D. W., Krischik, V. A. (1989) Variation and function of cucurbitacins in Cucurbita: an examination of current hypotheses. Am. Nat., 133(6), 766–786.CrossRefGoogle Scholar
  40. Tasei, J. N., & Aupinel, P. (2008a) Validation of a method using queenless Bombus terrestris micro-colonies for testing the nutritive value of commercial pollen mixes by comparison with queenright colonies. J. Econ. Entomol., 101(6), 1737–1742.CrossRefPubMedGoogle Scholar
  41. Tasei, J.-N., & Aupinel, P. (2008b) Nutritive value of 15 single pollens and pollen mixes tested on larvae produced by bumblebee workers (Bombus terrestris, Hymenoptera: Apidae). Apidologie, 39(4), 397–409.CrossRefGoogle Scholar
  42. Van Handel, E., Day, J.F. (1988) Assay of lipids, glycogen and sugars in individual mosquitoes: correlations with wing length in field-collected Aedes vexans. J. Am. Mosq. Control Assoc., 4 (4), 549–550.PubMedGoogle Scholar
  43. Vanderplanck, M., Moerman, R., Rasmont, P., Lognay, G., Wathelet, B. et al. (2014) How does pollen chemistry impact development and feeding behaviour of polylectic bees? PLoS One, 9(1), 1–9.CrossRefGoogle Scholar
  44. Vaudo, A. D., Tooker, J. F., Grozinger, C. M., & Patch, H. M. (2015) Bee nutrition and floral resource restoration. Curr. Opin. Insect Sci., 10, 133–141.CrossRefPubMedGoogle Scholar
  45. Vaudo, A. D., Patch, H. M., Mortensen, D. A., Tooker, J. F., & Grozinger, C. M. (2016a) Macronutrient ratios in pollen shape bumble bee (Bombus impatiens) foraging strategies and floral preferences. Proc. Natl. Acad. Sci. U. S. A., 113(28), E4035-E4042.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Vaudo, A. D., Stabler, D., Patch, H. M., Tooker, J. F., Grozinger, C. M., et al. (2016b) Bumble bees regulate their intake of the essential protein and lipid pollen macronutrients. J. Exp. Biol., 219(24), 3962–3970.CrossRefPubMedGoogle Scholar
  47. Vaudo, A. D., Farrell, L. M., Patch, H. M., Grozinger, C. M., & Tooker, J. F. (2018) Consistent pollen nutritional intake drives bumble bee (Bombus impatiens) colony growth and reproduction across different habitats. Ecol. Evol., 8, 5765–5776.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Westphal, C., Steffan-Dewenter, I. & Tscharntke, T. (2009) Mass flowering oilseed rape improves early colony growth but not sexual reproduction of bumble bees. J. Appl. Ecol., 46, 187–193.CrossRefGoogle Scholar
  49. Wright, G. A., Nicolson, S. W., & Shafir, S. (2018) Nutritional physiology and ecology of honey bees. Annu. Rev. Entomol. 63, 327–344.CrossRefPubMedGoogle Scholar
  50. Yerushalmi S, Bodenhaimer S, Bloch G (2006) Developmentally determined attenuation in circadian rhythms links chronobiology to social organization in bees. J. Exp. Biol., 209,1044–1051CrossRefPubMedGoogle Scholar
  51. Zarchin, S., Dag, A., Salomon, M., Hendriksma, H. P., & Shafir, S. (2017) Honey bees dance faster for pollen that complements colony essential fatty acid deficiency. Behav. Ecol. Sociobiol., 71(12), 172.CrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life SciencesPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations