, Volume 50, Issue 4, pp 414–424 | Cite as

Effects of ensiling on the quality of protein supplements for honey bees Apis mellifera

  • Juliana Pereira Lisboa Mohallem PaivaEmail author
  • Elisa Esposito
  • Gabriel Inácio de Morais Honorato De Souza
  • Tiago Mauricio Francoy
  • Michelle Manfrini Morais
Original article


We developed a nutritious, palatable, and attractive fermented diet as supplementary food for honey bees (Apis mellifera) during periods of natural food scarcity. Two types of commercial silage inoculants were tested; bacteria and a mix of bacteria and fungi were used to ferment a protein-based feed for 7, 14, or 28 days. The positive control consisted of beebread and the negative controls were sucrose solution 50%, w/v) and the unfermented protein diet. These feeds were offered, 4 g each, along with sucrose solution ad libitum, to 60 worker bees confined in plastic cages (seven replicates, 7 days). A pool of 20 bees/cage was collected on the first day (day 0) and on the 7th day of the experiment, for protein quantification by the Bradford method and for the electrophoretic profile of the proteins by SDS-polyacrylamide gel electrophoresis. The diets fermented for 7 days were the most consumed when compared with unfermented protein diet and with beebread. All the bees that ate the fermented feeds (except for the 28-day fermentation period) presented higher titers of protein in the hemolymph when compared with the bees that did not consume any protein food (negative control and day 0). The electrophoretic analysis presented a protein profile compatible with good protein expression in the hemolymph of the bees that consumed the fermented feeds, in comparison with bees that had no access to a protein diet. Consequently, we conclude that fermenting protein supplements with silage inoculants is a viable alternative for producing protein diets that are nutritious and palatable for honey bees.


Apis mellifera fermentation artificial diets inoculants 



The authors thank Dr. David De Jong for reviewing the manuscript. We are also thankful to the Agência Paulista de Tecnologia dos Agronegócios (APTA-SAA, SP), in particular, Dr. Érica Weinstein Teixeira, for providing biological material, and we thank Natucentro for providing artificial diets for bees.

Authors contributions

JP, MM, and EE: conceived this research and designed the experiments; MM, GS, and TF: design and interpretation of the data; JP, EE, and GS: experiments and analysis; JP, MM, and TF: writing and revision. All authors read and approved.

Funding information

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.


  1. Aksu, T., Baytoka, E., Bolat, D. (2004). Technical note: effects of a bacterial silage inoculant on corn silage fermentation and nutrient digestibility. Small Rumin. Res. 55, 249–252. CrossRefGoogle Scholar
  2. Alberoni, D.; Gaggìa, F.; Baffoni, L. and Di Gioia, D. (2016). Beneficial microorganisms for honey bees: problems and progresses. Appl. Microbiol. Biotechnol., 100(22): 9469–9482. CrossRefPubMedGoogle Scholar
  3. Almeida-Dias, J. M. V; Morais, M.M; Francoy, T.M; Pereira, R.M; Turcatto, A.P and De Jong, D. (2018). Fermentation of a pollen substitute diet with beebread microorganisms increases diet consumption and hemolymph protein levels of honey bees (Hymenoptera: Apidae). Sociobiology 65, (4): 760–765 ( Special Issue.CrossRefGoogle Scholar
  4. Anderson KE. and Ricigliano VA. (2017). Honey bee gut dysbiosis: a novel context for disease ecology. Curr Opin Insect Sci. 22, 125–132. CrossRefPubMedGoogle Scholar
  5. Anderson, K.E., Sheehan, T.H., Mott, B.M., Maes, P., Snyder, L., Schwan, M.R., Walton, A., Jones, B.M, Corby-Harris, V. (2013). Microbial ecology of the hive and pollination landscape: bacterial associates from floral nectar, the alimentary tract and stored food of honey bees (Apis mellifera). PLoS One 8 (12) e83125. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Anderson, K.E., Rodrigues, P.A., Mott, B.M, Maes, P., Corby-Harris, V. (2015). Ecological Succession in the Honey Bee Gut: Shift in Lactobacillus Strain Dominance During Early Adult Development. Microb. Ecol., 71(4):1008–19. CrossRefPubMedGoogle Scholar
  7. Basualdo, M.; Barragán, S.; Antúnez, K. (2014). Bee bread increases honeybee haemolymph protein and promote better survival despite of causing higher Nosema ceranae abundance in honeybees. Environ. Microbiol. Rep. 6(4)396–400. CrossRefGoogle Scholar
  8. Behera, S. S., Ray, R. C., & Zdolec, N. (2018). Lactobacillus plantarum with Functional Properties: An Approach to Increase Safety and Shelf-Life of Fermented Foods. Biomed. Res. Int., 9361614.
  9. Bitondi, M.M.G., and Z.L.P. Simões. (1996). The relationship between level of pollen in the diet: vitellogenin and juvenile hormone titers in Africanized Apis mellifera workers. J. Apic. Res. 35, 27–36. CrossRefGoogle Scholar
  10. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, (1–2): 248–254. CrossRefPubMedGoogle Scholar
  11. Brindza J et al. (2010). Pollen microbial colonization and food safety. Acta Chim. Slov. 3, 95–102.Google Scholar
  12. Brodschneider, R., Crailsheim, K. (2010). Nutrition and health in honey bees. Apidologie 41 (3), 278–294. CrossRefGoogle Scholar
  13. Carroll, M.J et al.(2017).Honey bees preferentially consume freshly-stored pollen. PLoS One 12(4): e0175933. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cook, S.M; Awmack, C.S, Murray, D.A and Williams, I.H. (2003). Are honey bees’ foraging preferences affected by pollen amino acid composition? Short Communication. Ecol. Entomol. 28, 622–627. CrossRefGoogle Scholar
  15. Crailsheim K. (1990). The protein balance of the honey bee worker. Apidologie 21, 417–429. CrossRefGoogle Scholar
  16. Cremonez, T.M; De Jong, D, Bitondi, M.M.G.(1998).Quantification of hemolymph proteins as a fast testing protein diets for honey bees (Hymenoptera: Apidae), J. Econ. Entomol. 91, 1284–1289.CrossRefGoogle Scholar
  17. De Jong D. et al. (2009). Pollen substitutes increase honey bee haemolymph protein levels as much as or more than does pollen. J. Apic. Res. 48 (1), 34–37. CrossRefGoogle Scholar
  18. DeGrandi-Hoffman G, Eckholm BJ, Huang MH. (2012). A comparison of beebread made by Africanized and European honey bees (Apis mellifera) and its effects on hemolymph protein titers. Apidologie; 44 (1) 52–63. CrossRefGoogle Scholar
  19. DeGrandi-Hoffman, G. et al. (2018). Connecting the nutrient composition of seasonal pollens with changing nutritional needs of honey bee (Apis mellifera L.) colonies. J. Insect Physiol.,109, 114–124. CrossRefPubMedGoogle Scholar
  20. Ellis, A.M. and Hayes Jr, G.W. (2009). An evaluation of fresh versus fermented diets for honey bees (Apis mellifera). J. Apic. Res. 48 (3), 215–216.
  21. Gilliam, M., Roubik, D.W., Lorenz, B.J. (1990). Microorganisms associated with pollen, honey, and brood provisions in the nest of a stingless bee, Melipona fasciata. Apidologie 21 (2), 89–97. CrossRefGoogle Scholar
  22. Haydak, M.H. (1963) Age of nurse bees and brood rearing. J. Apic. Res. 2(2), 101–103. CrossRefGoogle Scholar
  23. Herbert Jr, E.W. (1992) Honey bee nutrition. In ‘The hive and the honeybee’. (Ed. JM Graham). Dadant and Sons: Hamilton, pp. 197–233.Google Scholar
  24. Herbert Jr, E.W and Shimanuki, H. (1978). Chemical composition and nutritive value of bee-collected and bee-stored pollen. Apidologie 9 (1), 33–40.
  25. Herbert Jr., E.W and Shimanuki, H. (1977) Brood-rearing capability of caged honeybees fed synthetic diets. J. Apic. Res. 16(3), 150–153. CrossRefGoogle Scholar
  26. Hoover, S.E.R., Higo, H.A., Winston, M.L. (2006). Worker honey bee ovary development: seasonal variation and the influence of larval and adult nutrition. J. Comp. Physiol. B.176, 55–6. CrossRefPubMedGoogle Scholar
  27. Hu X and Beeton, C.(2010). Detection of functional matrix metalloproteinases by zymography. J. Vis. Exp. 45, e2445. CrossRefGoogle Scholar
  28. Keady, T.W.J., Steen, R.W.J., Kilpatrick, D.J., Mayne, C.S. (1994). Effects of inoculant treatment on silage fermentation, digestibility and intake by growing cattle. Grass Forage Sci. 49, 284–294. CrossRefGoogle Scholar
  29. Kristensen, N.B., Sloth, K.H., Højberg, O., Spliid, N.H., Jensen, C., Thøgersen, R. (2010). Effects of microbial inoculants on corn silage fermentation, microbial contents, aerobic stability, and milk production under field conditions. Dairy Sci. 93, 3764–3774. Scholar
  30. Kung, L., Ranjit, N.K. (2001). The Effect of Lactobacillus buchneri and Other Additives on the Fermentation and Aerobic Stability of Barley Silage. J. Dairy Sci. 84 (5), 1149–1155. CrossRefPubMedGoogle Scholar
  31. Loper GM et al. (1980). Biochemistry and microbiology of bee-collected almond (Prunus dulcis) pollen and beebread. I- Fatty Acids, Sterols, Vitamins and Minerals. Apidologie, Springer Verlag.; 11 (1), 63–73. CrossRefGoogle Scholar
  32. Morais, M.M., Turcatto, A.P., Francoy, T.M., Gonçalves, L.S., Cappelari, F.A., De Jong, D. (2013a). Evaluation of inexpensive pollen substitute diets through quantification of haemolymph proteins. J. Apic. Res. 52 (3), 119–121. CrossRefGoogle Scholar
  33. Morais, M.M., Turcatto, A.P., Pereira, R.A., Francoy, T.M., Guidugli-Lazzarini, K.R., Gonçalves, L.S., Almeida-Dias, J.M.V., Ellis, J.D., De Jong, D. (2013b). Protein levels and colony development of Africanized and European honey bees fed natural and artificial diets. Genet. Mol. Res. 12 (4), 6915–6922. CrossRefPubMedGoogle Scholar
  34. Muck, R.E. (1988). Factors influencing silage quality and their implications for management. J. Dairy Sci.; 71: 2992–3002.CrossRefGoogle Scholar
  35. Nicolson SW. (2011). Bee Food: The Chemistry and Nutritional Value of Nectar, Pollen and Mixtures of the Two. Afr. Zool. 46(2): 197–204. CrossRefGoogle Scholar
  36. Pahlow, G.; Muck, R.E.; Driehuis, F. et al. (2003). Microbiology of ensiling. In: Buxton, D.R.; Muck, R.E.; Harrison, J.H. (Eds.) Silage science and technology. Madison: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America. p. 31–93.Google Scholar
  37. Paiva, J.P.L.M., Paiva, H.M., Esposito, E., Morais, M.M. (2016). On the Effects of Artificial Feeding on Bee Colony Dynamics: A Mathematical Model. PLoS One 11 (11), e0167054. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Peng, Y., D’Antuono, M., Manning, R. (2012). Effects of pollen and artificial diets on the hypopharyngeal glands of newly hatched bees (Apis mellifera L.). J. Apic. Res. 51 (1), 53–62. CrossRefGoogle Scholar
  39. Roulston, T.H. and Cane, J. (2000). Pollen nutritional content and digestibility for animals. Plant Syst. Evol. 222, 187–209. CrossRefGoogle Scholar
  40. Scherer, R., Gerlach, K., Sudekun, K.H. (2015). Biogenic amines and gamma-amino butyric acid in silage: Formation, occurrence and influence on dry matter intake and ruminant production. Anim. Feed Sci. Technol., 210:1–16.CrossRefGoogle Scholar
  41. Schmidt, J.O. and Hanna, A. (2006). Chemical nature of phagostimulants in pollen attractive to honeybees. J. Insect Behav. 19, 521–532. CrossRefGoogle Scholar
  42. Schröder, J.J; de Visser, W; Assinck, F.B.T; Velthof, G.L. (2013) Effects of short-term nitrogen supply from livestock manures and cover crops on silage maize production and nitrate leaching. Soil Use and Management 29 (2):151-160.Google Scholar
  43. Somerville, Doug & Rural Industries Research and Development Corporation (Australia) (2005). Fat bees skinny bees: a manual on honey bee nutrition for beekeepers: a report for the Rural Industries Research and Development Corporation. Rural Industries Research and Development Corporation, Barton.Google Scholar
  44. Sun, L. et al. (2018). Changes in microbial population and chemical composition of corn stover during field exposure and their evaluation on silage fermentation and in vitro digestibility. Asian Australas. J. Anim. Sci.
  45. Tasei, J.N., Aupinel, P. (2008). Nutritive value of 15 single pollens and pollen mixes tested on larvae produced by bumblebee workers (Bombus terrestris, Hymenoptera: Apidae). Apidologie 39, 397–409. CrossRefGoogle Scholar
  46. Tortora, G. J.; Funke, B.R.; Case, C. L. (2012). Microbiology: An Introduction.10th Edition. Pearson Education, Inc., publishing as Benjamin Cummings, 937 p.Google Scholar
  47. Urcan, A.C.; Criste, A.D.; Dezmirean, D.S.; Mărgăoan, R.; Caeiro, A.; Graça Campos, M. (2018). Similarity of data from bee bread with the same taxa collected in India and Romania. Molecules 23, 2491. CrossRefPubMedCentralGoogle Scholar
  48. Van der Steen, J. (2007). Effect of a home-made pollen substitute on honey bee colony development. J. Apic. Res. 46, 2. Scholar
  49. Vasques, A., Olofsson, T. (2009). The lactic acid bacteria involved in the production of bee pollen and bee bread. Apicult. Res. Bee World 48(3): 189–195. CrossRefGoogle Scholar
  50. Venus, J., Ilder, F., Albrecht, C. (1992). New ways of selecting lactic acid bacteria for biotechnological processes. Appl. Microbiol. Biotechnol., 37: 240–243. CrossRefGoogle Scholar
  51. Winston, M. (2003). The Biology of the Honey Bee. Harvard University Press, 294 p.Google Scholar
  52. Wright, G.A.; Nicolson, S.W; Shafir, S. (2017). Nutritional physiology and ecology of honey bees. Annu. Rev. Entomol., 63: 327–344. CrossRefPubMedGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  • Juliana Pereira Lisboa Mohallem Paiva
    • 1
    Email author
  • Elisa Esposito
    • 1
  • Gabriel Inácio de Morais Honorato De Souza
    • 1
  • Tiago Mauricio Francoy
    • 2
  • Michelle Manfrini Morais
    • 3
  1. 1.Instituto de Ciência e TecnologiaUniversidade Federal de São PauloSão José dos CamposBrazil
  2. 2.Escola de Artes, Ciências e HumanidadesUniversidade de São PauloSão PauloBrazil
  3. 3.Departamento de Ecologia e EvoluçãoUniversidade Federal de São PauloDiademaBrazil

Personalised recommendations