, Volume 50, Issue 4, pp 472–481 | Cite as

Effect of chamber characteristics, incubation, and diluent on motility of honey bee (Apis mellifera) drone sperm

  • Jesús YánizEmail author
  • Inmaculada Palacín
  • Pilar Santolaria
Original article


In this study, we compared the effect of five different sample viewing devices (slide coverslips, Makler, Leja10, Leja20, and ISAS10 chambers), incubation time, analysis time, microscopic field analysis, and diluent used on honey bee semen motility parameters. Using media without proteins, a lower proportion of total motile and of freely motile sperm (those non-adhering to the glass surface) were observed for slide coverslip and slide coverslip–Makler chambers, respectively, than in other chambers, while the percentage of circular sperm followed an opposite trend. Significant increases in all motility parameters were observed when loaded Leja10 chambers were maintained at 35 °C. During microscopic field analysis in the Leja Chamber, the percentage of freely motile sperm decreased and those of circular sperm increased in the last fields evaluated. The addition of 2% of BSA to the diluent clearly reduced the sperm adhesion to glass surface when using slide coverslip and Makler chambers. This study confirms that the choice of chamber and diluent used to assess honey bee drone sperm motility has a significant effect on the results wherein traditional slide coverslips are contraindicated.


Apis mellifera iberiensis sperm motility 


Authors’ contributions

JY conceived this research, designed and performed experiments and analysis, and wrote the paper; IP and PS participated in the design, the experiments and participated in the revisions of it.

Funding information

This work was supported by the Spanish MINECO (grant AGL2017-85030-R), and the DGA-FSE (grant A07_17R).


  1. Armant, D.R., Ellis, M.A., (1995). Improved Accuracy of Sperm Motility Assessment Using a Modified Micro-Cell Sperm Counting Chamber. Fertil. Steril. 63, 1128–1130CrossRefPubMedGoogle Scholar
  2. Ben Abdelkader, F., Kairo, G., Tchamitchian, S., Cousin, M., Senechal, J., Crauser, D., Vermandere, J.P., Alaux, C., Le Conte, Y., Belzunces, L.P., Barbouche, N., Brunet, J.L., (2014) Semen quality of honey bee drones maintained from emergence to sexual maturity under laboratory, semi-field and field conditions. Apidologie 45, 215–223CrossRefGoogle Scholar
  3. Bompart, D., Garcia-Molina, A., Valverde, A., Caldeira, C., Yaniz, J., Nunez de Murga, M., Soler, C. (2018) CASA-Mot technology: how results are affected by the frame rate and counting chamber. Reprod. Fertil. Dev. 30, 810–819CrossRefPubMedGoogle Scholar
  4. Chapeau, C., Gagnon, C. (1987) Nitrocellulose and polyvinyl coatings prevent sperm adhesion to glass without affecting the motility of intact and demembranated human spermatozoa. J. Androl. 8, 34–40CrossRefPubMedGoogle Scholar
  5. Ciereszko, A., Wilde, J., Dietrich, G.J., Siuda, M., Bak, B., Judycka, S., Karol, H. (2017) Sperm parameters of honeybee drones exposed to imidacloprid. Apidologie 48, 211–222CrossRefGoogle Scholar
  6. Cobey, S.W.,. Tarpy, D.R, Woyke, J. (2013) Standard methods for instrumental insemination of Apis mellifera queens. J. Apicult. Res. 52, 1–18CrossRefGoogle Scholar
  7. Collins, A.M. (2000) Relationship between semen quality and performance of instrumentally inseminated honey bee queens. Apidologie 31, 421–429.CrossRefGoogle Scholar
  8. Collins, A.M. (2003) A scientific note on the effect of centrifugation on pooled honey bee semen. Apidologie 34, 469–470CrossRefGoogle Scholar
  9. Collins, A.M. (2004a) Functional longevity of honey bee, Apis mellifera, queens inseminated with low viability semen. J. Apicult. Res. 43, 167–171.CrossRefGoogle Scholar
  10. Collins, A.M. (2004b) Sources of variation in the viability of honey bee, Apis mellifera L., semen collected for artificial insemination. Invertebr. Reprod. Dev. 45, 231–237CrossRefGoogle Scholar
  11. Collins, A.M. (2005) Insemination of honey bee, Apis mellifera, queens with non-frozen stored semen: sperm concentration measured with a spectrophotometer. J. Apicult. Res. 44, 141–145CrossRefGoogle Scholar
  12. Collins, A.M., Pettis, J.S. (2001) Effect of varroa infestation on semen quality. Am. Bee J. 141, 590–593Google Scholar
  13. Contri, A., Valorz, C., Faustini, M., Wegher, L., Carluccio, A. (2010) Effect of semen preparation on casa motility results in cryopreserved bull spermatozoa. Theriogenology 74, 424–435CrossRefPubMedGoogle Scholar
  14. Czekonska, K., Chuda-Mickiewicz, B., Chorbinski, P. (2013a) The effect of brood incubation temperature on the reproductive value of honey bee (Apis mellifera) drones. J. Apicult. Res. 52, 96–105CrossRefGoogle Scholar
  15. Czekonska, K., Chuda-Mickiewicz, B., Chorbinski, P. (2013b) The influence of honey bee (Apis mellifera) drone age on volume of semen and viability of spermatozoa. J. Apic. Sci. 57, 61–66Google Scholar
  16. Czekonska, K., Chuda-Mickiewicz, B., Samborski, J. (2015) Quality of honeybee drones reared in colonies with limited and unlimited access to pollen. Apidologie 46, 1–9CrossRefGoogle Scholar
  17. Del Gallego, R., Sadeghi, S., Blasco, E., Soler, C., Yaniz, J.L., Silvestre, M. A. (2017) Effect of chamber characteristics, loading and analysis time on motility and kinetic variables analysed with the CASA-mot system in goat sperm. Anim. Reprod. Sci. 177, 97–104CrossRefPubMedGoogle Scholar
  18. DelCacho, E., Marti, J.I., Josa, A., Quilez, J., SanchezAcedo, C. (1996) Effect of Varroa jacobsoni parasitization in the glycoprotein expression on Apis mellifera spermatozoa. Apidologie 27, 87–92CrossRefGoogle Scholar
  19. den Boer, S.P.A., Boomsma, J.J., Baer, B. (2009) Honey bee males and queens use glandular secretions to enhance sperm viability before and after storage. J. Insect. Physiol. 55, 538–543CrossRefGoogle Scholar
  20. Gajger, I.T., Sakac, M., Gregorc, A. (2017) Impact of thiamethoxam on honey bee queen (Apis mellifera carnica) reproductive morphology and physiology. Bul. Environ. Contam. Toxicol. 99, 297–302CrossRefGoogle Scholar
  21. Gloria, A., Carluccio, A., Contri, A., Wegher, L., Valorz, C., Robbe, D. (2013) The effect of the chamber on kinetic results in cryopreserved bull spermatozoa. Andrology 1, 879–885CrossRefPubMedGoogle Scholar
  22. Hopkins, B.K., Herr, C. (2010). Factors affecting the successful cryopreservation of honey bee (Apis mellifera) spermatozoa. Apidologie 41, 548–556CrossRefGoogle Scholar
  23. Hopkins, B.K., Cobey, S.W., Herr, C., Sheppard, W.S. (2017). Gel-coated tubes extend above-freezing storage of honey bee (Apis mellifera) semen to 439 days with production of fertilised offspring. Reprod. Fertil. Dev. 29, 1944–1949CrossRefPubMedGoogle Scholar
  24. Johnson, R.M., Dahlgren, L., Siegfried, B.D., Ellis, M.D. (2013) Effect of in-hive miticides on drone honey bee survival and sperm viability. J. Apicult. Res. 52, 88–95CrossRefGoogle Scholar
  25. Lenz, R.W., Kjelland, M.E., Vonderhaar, K., Swannack, T.M., Moreno, J.F. (2011) A comparison of bovine seminal quality assessments using different viewing chambers with a computer-assisted semen analyzer. J. Anim. Sci. 89, 383–388CrossRefPubMedGoogle Scholar
  26. Locke, S.J., Peng, Y.S. (1993) The effects of drone age, semen storage and contamination on semen quality in the honeybee (Apis mellifera). Physiol. Entomol. 18, 144–148CrossRefGoogle Scholar
  27. Lodesani, M., Balduzzi, D., Galli, A. (2004) Functional characterisation of semen in honeybee queen (A. m. ligustica) spermatheca and efficiency of the diluted semen technique in instrumental insemination. Ital. J. Anim. Sci. 3, 385–392CrossRefGoogle Scholar
  28. Marti, J.I., Del Cacho, E., Josa, A., Espinosa, E., Muiño-Blanco, T. (1996) Plasma membrane glycoproteins of mature and inmature drone honey bee (Apis mellifera L.) spermatozoa: lecting-binding as seen by light and electron microscopy. Theriogenology 46, 181–190CrossRefGoogle Scholar
  29. Nothling, J.O., dos Santos, I.P. (2012) Which fields under a coverslip should one assess to estimate sperm motility? Theriogenology 77, 1686–1697CrossRefPubMedGoogle Scholar
  30. Nur, Z., Seven-Cakmak, S., Ustuner, B., Cakmak, I., Erturk, M., Abramson, C. I., Sagirkaya, H., Soylu, M. K. (2012) The use of the hypo-osmotic swelling test, water test, and supravital staining in the evaluation of drone sperm. Apidologie 43, 31–38CrossRefGoogle Scholar
  31. Palacín, I., Vicente-Fiel, S., Santolaria, P., Yániz, J.L. (2013) Standardization of CASA sperm motility assessment in the ram. Small. Rum. Res. 112, 128–135CrossRefGoogle Scholar
  32. Pettis, J.S., Rice, N., Joselow, K., van Engelsdorp, D., Chaimanee, V. (2016) Colony failure linked to low sperm viability in honey bee (Apis mellifera) queens and an exploration of potential causative factors. PloS One 11, e0147220CrossRefPubMedPubMedCentralGoogle Scholar
  33. Rhodes, J.W., Harden, S., Spooner-Hart, R., Anderson, D.L., Wheen, G. (2011) Effects of age, season and genetics on semen and sperm production in Apis mellifera drones. Apidologie 42, 29–38CrossRefGoogle Scholar
  34. Rousseau, A., Fournier, V., Giovenazzo, P. (2015) Apis mellifera (Hymenoptera: Apidae) drone sperm quality in relation to age, genetic line, and time of breeding. Can. Entomol. 147, 702–711CrossRefGoogle Scholar
  35. Ruttner, F. (1976). The Instrumental Insemination of the Queen Bee. Apimondia Publishing House. Bucharest.Google Scholar
  36. Schluns, H., Schluns, E.A., van Praagh, J., Moritz, R.F.A. (2003) Sperm numbers in drone honeybees (Apis mellifera) depend on body size. Apidologie 34, 577–584.CrossRefGoogle Scholar
  37. Shafir, S., Kabanoff, L., Duncan, M., Oldroyd, B.P. (2009) Honey bee (Apis mellifera) sperm competition in vitro - two are no less viable than one. Apidologie 40, 556–561CrossRefGoogle Scholar
  38. Stürup, M., Baer-Imhoof, B., Nash, D.R., Boomsma, J.J., Baer, B. (2013) When every sperm counts: factors affecting male fertility in the honeybee Apis mellifera. Behav. Ecol., 24, 1192–1198CrossRefGoogle Scholar
  39. Taylor, M.A., Guzman-Novoa, E., Morfin, N., Buhr, M.M. (2009) Improving viability of cryopreserved honey bee (Apis mellifera L.) sperm with selected diluents, cryoprotectants, and semen dilution ratios. Theriogenology 72, 149–159CrossRefPubMedGoogle Scholar
  40. Verstegen, J., Iguer-Ouada, M., Onclin, K. (2002) Computer assisted semen analyzers in andrology research and veterinary practice. Theriogenology 57, 149–179CrossRefPubMedGoogle Scholar
  41. Wegener, J., May, T., Knollmann, U., Kamp, G., Muller, K., Bienefeld, K. (2012) In vivo validation of in vitro quality tests for cryopreserved honey bee semen. Cryobiology 65, 126–131CrossRefPubMedGoogle Scholar
  42. Wegener, J., May, T., Kamp, G., Bienefeld, K. (2014) A successful new approach to honeybee semen cryopreservation. Cryobiology 69, 236–242CrossRefPubMedGoogle Scholar
  43. Yániz, J.L., Palacín, I., Vicente-Fiel, S., Gosálvez, J., López-Fernández, C., Santolaria, P. (2013) Comparison of membrane-permeant fluorescent probes for sperm viability assessment in the ram. Reprod. Domest. Anim. 48, 598–603CrossRefPubMedGoogle Scholar
  44. Yaniz, J.L., Silvestre, M.A., Santolaria, P., Soler, C. (2018) CASA-Mot in mammals: an update. Reprod. Fertil. Dev. 30, 799–809CrossRefPubMedGoogle Scholar
  45. Zaitoun, S., Al-Ghzawi, A.A.M., Kridli, R. (2009) Monthly changes in various drone characteristics of Apis mellifera ligustica and Apis mellifera syriaca. Entomol. Sci. 12, 208–214CrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Animal Production and Food Sciences, EPSHUniversity of ZaragozaHuescaSpain
  2. 2.BIOFITER Research Group, Environmental Sciences Institute (IUCA), Department of Animal Production and Food SciencesUniversity of ZaragozaHuescaSpain

Personalised recommendations