Advertisement

Apidologie

, Volume 50, Issue 4, pp 425–435 | Cite as

Wild bumble bee foraging preferences and fat content in highbush blueberry agro-ecosystems

  • Michelle TOSHACK
  • Elizabeth ELLEEmail author
Original article
  • 97 Downloads

Abstract

Agricultural intensification can impact the availability and quality of resources. We analyzed resource use by bumble bees (Bombus spp.), important pollinators of highbush blueberry (Vaccinium corymbosum), collected from conventional highbush blueberry farms, organic highbush blueberry farms, and nearby natural areas in the lower Fraser River valley of British Columbia, Canada. We identified corbicular pollen and measured bee fat content as an indicator of body condition. Bumble bees use non-crop resources, including pollen from plant species not found on farms. Bees from natural areas had higher pollen protein content in corbicular pollen and higher body fat content than those from conventional and organic farms. There was no difference between farm types, and we could not demonstrate a relationship between pollen protein and bee fat content. Our findings illustrate the importance of resource availability throughout agro-ecological landscapes, including not only farms but also off-farm areas.

Keywords

Bombupollen analysis pollinator body condition Vaccinium corymbosum 

Notes

Acknowledgements

T. Haapalainen provided field assistance, and T. Williams, A. Cornell, and J. Yap assisted with lipid extraction protocols. Multiple farmers, the City of Abbotsford, and the Metro Vancouver Regional Parks provided site access.

Author contribution

MT and EE conceived this research and designed the experiments. MT performed the research and analyzed the data with input from EE. MT wrote the paper, and EE participated in the revisions. Both authors read and approved the final manuscript.

Funding information

Funding was provided by the Natural Sciences and Engineering Research Council of Canada (grant to EE), the USDA-NIFA Specialty Crop Research Initiative Grant (#2012-51181-20105) to the Integrated Crop Pollination Project, and the Northwest Scientific Association (grant to MT).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no potential conflict of interest in relation to the study in this paper.

Supplementary material

13592_2019_654_MOESM1_ESM.doc (84 kb)
ESM 1. (DOC 84.4 kb)

References

  1. Aizen, M. A. and Feinsinger, P., (2003) Bees not to be? Responses of insect pollinator faunas and flower pollination to habitat fragmentation. Pages 111–129 in G. A. Bradshaw and P.A. Marquet, editors. How landscapes change. Springer-Verlag Berlin, Germany.CrossRefGoogle Scholar
  2. Alaux, C., Ducloz, F., Crauser, D. and Le Conte, Y., (2010) Diet effects on honeybee immunocompetence. Biol. Lett. 6, 562–565.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Amdam, G.V. and Omholt, S.W., (2002) The regulatory anatomy of honeybee lifespan. J. Theor. Biol. 216, 209–28.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Arrese, E.L. and Soulages, J.L., (2010) Insect fat body: energy, metabolism, and regulation. Annu. Rev. Entomol. 55, 207–225.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bates, D., Maechler, M., Bolker, B.M. and Walker, S., (2015) Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48.CrossRefGoogle Scholar
  6. Blaauw, B.R. and Isaacs, R., (2015) Wildflower plantings enhance the abundance of natural enemies in adjacent blueberry fields. Biol Control 91, 94-103.CrossRefGoogle Scholar
  7. Bobiwash, K., Uriel, Y. and Elle, E., (2018) Pollen foraging differences among three managed pollinators in the highbush blueberry (Vaccinium corymbosum) agroecosystem. J. Econ. Entomol. 111, 26–32.CrossRefPubMedGoogle Scholar
  8. Bullock, S.H., (1999) Relationships among body size , wing size and mass in bees from a tropical dry forest in México. J. Kansas Entomol. Soc. 72, 426–439.Google Scholar
  9. Button, L. and Elle, E., (2014) Wild bumble bees reduce pollination deficits in a crop mostly visited by managed honey bees. Agric. Ecosyst. Environ. 197, 255–263.CrossRefGoogle Scholar
  10. Cane, J.H., (1987) Estimation of bee size using intertegular span (Apoidea). J. Kansas Entomol. Soc. 60, 145–147.Google Scholar
  11. Couvillon, M. J., R. Schurch, and F. L. W. Ratnieks., (2014). Waggle dance distances as integrative indicators of seasonal foraging challenges. PLoS ONE 9:7.CrossRefGoogle Scholar
  12. Crompton, C.W. and Wojtas, W.A., (1993) Pollen Grains of Canadian Honey Plants. Ottawa: Agriculture Canada.Google Scholar
  13. Cunningham, S.A., (2000) Depressed pollination in habitat fragments causes low fruit set. Proc. R. Soc. Lond. B Biol. Sci. 267, 1149–1152.CrossRefGoogle Scholar
  14. de Groot, A.P., (1953) Protein and amino acid requirements of the honey bee (Apis mellifera L.). Lab. Comp. Physiol. 3, 197–285.Google Scholar
  15. Defries, R.S., Foley, J.A. and Asner, G.P., (2004) Land-use choices : balancing human needs and ecosystem function in a nutshell. Front. Ecol. Environ.. 2, 249–257.CrossRefGoogle Scholar
  16. Filipiak, M., Kuszewska, K., Asselman, M., Stawiarz, E., Woyciechowski, M. and Weiner, J., (2017) Ecological stoichiometry of the honeybee: pollen diversity and adequate species composition are needed to mitigate limitations imposed on the growth and development of bees by pollen quality. PLoS One 12, e0183236.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Foley, J.A., Defries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S., Coe, M.T., Daily, G.C., Gibbs, H.K., Helkowski, J.H., Holloway, T., Howard, E.A., Kucharik, C.J., Monfreda, C., Patz, J.A., Prentice, I.C., Ramankutty, N. and Snyder, P.K., (2005) Global consequences of land use. Science 309, 570–575.CrossRefGoogle Scholar
  18. Gabriel, D., Sait, S.M., Kunin, W.E. and Benton, T.G., (2013) Food production vs. biodiversity: comparing organic and conventional agriculture. J. Appl. Ecol. 50, 355–364.CrossRefGoogle Scholar
  19. Girard, M., Chagnon, M. and Fourniera, V., (2012) Pollen diversity collected by honey bees in the vicinity of Vaccinium spp. crops and its importance for colony developement. Botany 90, 545–555.CrossRefGoogle Scholar
  20. Goulson, D., Hughes, W.O.H., Derwent, L.C. and Stout, J.C., (2001) Colony growth of the bumblebee, Bombus terrestris, in improved and conventional agricultural and suburban habitats. Oecologia 130, 267–273.CrossRefGoogle Scholar
  21. Goulson, D., Nicholls, E., Botías, C. and Rotheray, E.L., (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1–16.CrossRefGoogle Scholar
  22. Greenleaf, S.S., Williams, N.M., Winfree, R. and Kremen, C., (2007) Bee foraging ranges and their relationship to body size. Oecologia 153, 589–96.CrossRefPubMedGoogle Scholar
  23. Hagen, M. and Dupont, Y.L., (2013) Inter-tegular span and head width as estimators of fresh and dry body mass in bumblebees (Bombus spp.). Insect. Soc. 60, 251–257.CrossRefGoogle Scholar
  24. Haydak, M.H. (1970) Honey bee nutrition. Annu. Rev. Entomol. 15, 143–156.CrossRefGoogle Scholar
  25. Hodges, D., (1952) The pollen loads of the honeybee : a guide to their identification by colour and form. Bee Research Association, University of Minnesota.Google Scholar
  26. Kearns, C. A. and Inouye, D. W., (1993) Techniques for pollination biologists. University Press of Colorado, Niwot.Google Scholar
  27. Klein, A.M., Steffan-Dewenter, I., Buchori, D. and Tscharntke, T., (2002) Effects of land-use intensity in tropical agroforestry systems on coffee flowervisiting and trap-nesting bees and wasps. Conserv Biol. 16, 1003–1014.CrossRefGoogle Scholar
  28. Klein, A.M., Steffan-Dewenter, I. and Tscharntke, T., (2003) Pollination of Coffea canephora in relation to local and regional agroforestry management. J Appl Ecol. 40, 837–845.CrossRefGoogle Scholar
  29. Kremen, C., Williams, N.M. and Thorp, R.W., (2002) Crop pollination from native bees at risk from agricultural intensification. Proc Natl Acad Sci U S A 99, 16812–16816.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Leonhardt, S. D. and Blüthgen N. 2012. The same, but different: pollen foraging in honeybee and bumblebee colonies. Apidologie 43, 449–464CrossRefGoogle Scholar
  31. Moerman R., Roger N., De Jonghe R., Michez D., and Vanderplanck M. 2016. Interspecific variation in bumblebee performance on pollen diet: new insights for mitigation strategies. PLoS One 11, e0168462.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Morandin, L.A. and Winston, M.L., (2005) Wild bee abundance and seed production in conventional, organic, and genetically modified canola. Ecol. Appl. 15, 871–881.CrossRefGoogle Scholar
  33. Naug, D., (2009) Nutritional stress due to habitat loss may explain recent honeybee colony collapses. Biol Cons 142, 2369–2372.CrossRefGoogle Scholar
  34. Nicholls, E. and de Ibarra, N.H. (2016) Assessment of pollen rewards by foraging bees. Funct. Ecol. 31, 76–87CrossRefGoogle Scholar
  35. Nicolson, S.W. and Human, H., (2013) Chemical composition of the ‘low quality’ pollen of sunflower (Helianthus annuus, Asteraceae). Apidologie 44, 144–152.CrossRefGoogle Scholar
  36. Norton, L., Johnson, P., Joys, A., Stuart, R., Chamberlain, D., Feber, R., Firbank, L., Manley, W., Wolfe, M., Hart, B., Mathews, F., Macdonald, D. and Fuller, R.J., (2009) Consequences of organic and non-organic farming practices for field, farm and landscape complexity. Agric. Ecosyst. Environ. 129, 221–227.CrossRefGoogle Scholar
  37. O’Neill, K.M., Delphia, C.M. and Pitts-Singer, T.L., (2015) Seasonal trends in the condition of nesting females of a solitary bee: wing wear, lipid content, and oocyte size. PeerJ 3, e930.CrossRefPubMedPubMedCentralGoogle Scholar
  38. R Core Team (2017) R: A Language and Environment for Statistical Computing. https://www.R-project.org/
  39. Requier, F., Odoux, J.-F., Tamic, T., Moreau, N., Henry, M., Decourtye, A. and Bretagnolle, V., (2015) Honey bee diet in intensive farmland habitats reveals an unexpectedly high flower richness and a major role of weeds. Ecol. Appl. 25, 881–890.CrossRefPubMedGoogle Scholar
  40. Ricketts, T.H., (2004) Tropical forest fragments enhance pollinator activity in nearby coffee crops. Conserv Biol 18, 1262–1271.CrossRefGoogle Scholar
  41. Roger, N., Michez, D., Wattiez, R., Sheridan, C., and Vanderplanck, M. (2017). Diet effects on bumblebee health. J. Insect Physiol. 96, 128–13.CrossRefPubMedGoogle Scholar
  42. Roulston, T.H. and Cane, J.H., (2000) Pollen nutritional content and digestibility for animals. Plant Syst. Evol. 222, 187–209.CrossRefGoogle Scholar
  43. Sidhu, C.S. and Joshi, N.K., (2016) Establishing wildflower pollinator habitats in agricultural farmland to provide multiple ecosystem services. Front. Plant Sci. 7, 1–5.Google Scholar
  44. Smart, M., Pettis, J., Rice, N., Browning, Z. and Spivak, M., (2016) Linking measures of colony and individual honey bee health to survival among apiaries exposed to varying agricultural land use. PLoS One 11, 1–28.Google Scholar
  45. Somerville, D.C., (2001) Nutritional value of bee collected pollens. Project number DAN.134A.' (Rural Industries Research and Development Corporation: Canberra). NSW Agric. 1–166.Google Scholar
  46. Somerville, D., (2005) Fat bees skinny bees. A manual on honey bee nutrition for beekeepers. Aust. Gov. Rural Ind. Res. Dev. Corp., Goulburn, 1–142.Google Scholar
  47. Somerville, D. and Nicol, H.I., (2006) Crude protein and amino acid composition of honey bee-collected pollen pellets from south-east Australia and a note on laboratory disparity. Aust. J. Exp. Agric. 46, 141–149.CrossRefGoogle Scholar
  48. Somme, L., Vanderplanck, M., Michez, D., Lombaerde, I., Moerman, R., Wathelet, B., Wattiez, R., Lognay, G. and Jacquemart, A., (2015) Pollen and nectar quality drive the major and minor floral choices of bumble bees. Apidologie 46, 92–106.CrossRefGoogle Scholar
  49. Steffan-Dewenter, I., Münzenberg, U., Bürger, C., Thies, C. and Tscharntke, T., (2002) Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83, 1421–1432.CrossRefGoogle Scholar
  50. Strohm, E., (2000) Factors affecting body size and fat content in a digger wasp. Oecologia 123, 184–191.CrossRefPubMedGoogle Scholar
  51. Tasei, J.-N. and Aupinel, P., (2008) Nutritive value of 15 single pollens and pollen mixes tested on larvae produced by bumblebee workers (Bombus terrestris, Hymenoptera: Apidae). Apidologie 39, 397–409.CrossRefGoogle Scholar
  52. Tilman, D., Fargione, J., Wolff, B., Antonio, C.D., Dobson, A., Howarth, R., Schindler, D., Schlesinger, W.H., Simberloff, D., Tilman, D., Fargione, J., Wolff, B., Antonio, C.D., Dobson, A., Howarth, R., Schindler, D., Schlesinger, W.H., Simberloff, D. and Swackhamer, D., (2001) Forecasting agriculturally driven global environmental change. Science 292, 281–284.CrossRefPubMedGoogle Scholar
  53. Toshack, M. C. (2018). Effects of farming practices and landscape composition on wild invertebrate pollinator and bird abundance, richness, and health. MSc thesis, Simon Fraser University.Google Scholar
  54. Vanderplanck, M., Moerman, R., Rasmont, P., Lognay, G., Wathelet, B., Wattiez, R., and Michez, D. 2014. How does pollen chemistry impact development and feeding behaviour of polylectic bees? PLoS One 9, e86209.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Vaudo, A.D., Patch, H.M., Mortensen, D.A., Tooker, J.F. and Grozinger, C.M., (2016) Macronutrient ratios in pollen shape bumble bee (Bombus impatiens) foraging strategies and floral preferences. Proc. Natl. Acad. Sci. 113, E4035–E4042.CrossRefPubMedGoogle Scholar
  56. Walther-Hellwig, K. and Frankl, R., (2000) Foraging habitats and foraging distances of bumblebees, Bombus spp. (Hymenoptera, Apidae), in an agricultural landscape. J. Appl. Entomol. 124, 299–306.CrossRefGoogle Scholar
  57. Waser, N.M., (1986) Flower constancy: definition, cause, and measurement. Am. Nat. 127, 593–603.CrossRefGoogle Scholar
  58. Westrich P. and Schmidt K., (1986) Methoden und Anwendungsgebiete der Pollenanalyse bei Wildbienen (Hymenoptera, Apoidea). Linzer Biol Beitr 18, 341–360.Google Scholar
  59. Westphal C, Steffan-Dewenter I, and Tscharntke T., (2003) Mass flowering crops enhance pollinator densities at a landscape scale. Ecol. Lett. 6 ,961–965.CrossRefGoogle Scholar
  60. Williams, C.M., Thomas, R.H., MacMillan, H.A., Marshall, K.E. and Sinclair, B.J., (2011) Triacylglyceride measurement in small quantities of homogenised insect tissue: comparisons and caveats. J. Insect Physiol. 57, 1602–1613.CrossRefPubMedGoogle Scholar
  61. Williams, N.M., Ward, K.L., Pope, N., Isaacs, R., Wilson, J.K., May, E., Ellis, J., Daniels, J., Pence, A., Ullmann, K. and Peters, J., (2015) Native wildflower plantings support wild bee abundance and diversity in agricultural landscapes across the United States. Ecol. Appl. 25, 2119–2131.CrossRefPubMedGoogle Scholar
  62. Willmer, P.G. and Finlayson, K., (2014) Big bees do a better job: intraspecific size variation influences pollination effectiveness. J. Pollinat. Ecol. 14, 244–254.Google Scholar
  63. Wilson-Rich, N., Dres, S.T. and Starks, P.T., (2009) The ontogeny of immunity: development of innate immune strength in the honey bee (Apis mellifera). J. Insect Physiol. 54, 1392–9.CrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Evolutionary and Behavioural Ecology Research Group, Department of Biological SciencesSimon Fraser UniversityBurnabyCanada

Personalised recommendations