Advertisement

Apidologie

pp 1–9 | Cite as

Prevalence of Nosema microsporidians in commercial bumblebees (Bombus terrestris) is not related to the intensity of their use at the landscape scale

  • Alejandro TrilloEmail author
  • Mark J. F. Brown
  • Montserrat Vilà
Original article

Abstract

The use of commercial bumblebees to aid crop pollination may result in overcrowding of agricultural landscapes by pollinators. Consequently, transmission of parasites between pollinators via shared flowers may be substantial. In SW Spain, we assessed the initial infection status of commercial Bombus terrestris colonies and then explored spatial and seasonal influences on changes in parasite prevalence across a landscape where bumblebee colonies are intensively used to pollinate berry crops. Colonies were placed inside strawberry greenhouse crops and in woodlands adjacent and distant to crops, in winter and in spring, as representative periods of high and low use of colonies, respectively. Worker bumblebees were collected from colonies upon arrival from a producer and 30 days after being placed in the field. The abdomen of each bumblebee was morphologically inspected for a range of internal parasites. Upon arrival, 71% of the colonies were infected by spores of Nosema. Three bumblebees from two colonies harboured Apicystis bombi spores at the end of their placement in woodlands adjacent to the crops. Nosema colony prevalence did not change significantly either among sites or between seasons. We found no evidence for the density of commercial B. terrestris impacting Nosema prevalence in those commercial colonies, but our results highlight the potential risk for parasites to be transmitted from commercial bumblebees to native pollinators.

Keywords

agricultural landscape Apicystis bombi Fragaria × ananassa parasite 

Notes

Acknowledgments

We thank J. Angelidou, C. Apostolidou, A. Montero-Castaño, D. Ragel and E. Tsiripli for the field assistance and the farmers for letting us work on their lands. We thank J. Bagi and E.J. Bailes for the lab support. We would also like to thank the editor and the anonymous reviewers for their comments that significantly improved the manuscript.

Author contributions

AT and MV conceived this research and designed the experiments; MJFB participated in the design and interpretation of the data; AT performed the experiments, analyses and wrote the first draft of the manuscript; MJFB and MV edited and contributed to the writing of the manuscript. All authors read and approved the final manuscript.

Funding information

Funding was provided by the Spanish Ministry of Economy and Competitiveness project FLORMAS (‘Influence of mass flowering crops on pollinator biodiversity, project no CGL2012-33801’) and by the Biodiversa-FACCE project ECODEAL (‘Enhancing biodiversity-based ecosystem services to crops through optimised densities of green infrastructure in agricultural landscapes, project no PCIN-2014-048’). AT was supported by a Severo-Ochoa predoctoral fellowship (SVP-2013-067592) and by a Short Term Scientific Mission from the COST Action (FA1307:35075) for international mobility.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13592_2019_637_MOESM1_ESM.doc (130 kb)
ESM 1. (DOC 129 kb)

References

  1. AEMET (2015). Valores climatológicos normales. Huelva, Ronda Este. http://www.aemet.es/es/ (Accessed 01 September 2015).
  2. Aizen, M. A., Garibaldi, L. A., Cunningham, S. A., Klein, A. M. (2008). Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Curr. Biol. 18 (20), 1572–1575.CrossRefGoogle Scholar
  3. Alford, D. V. (1975). Bumblebees. Davis-Poynter, London.Google Scholar
  4. Arneberg, P., Skorping, A., Grenfell, B., Read, A. F. (1998). Host densities as determinants of abundance in parasite communities. Proc. R. Soc. B Biol. Sci. 265 (1403), 1283–1289.CrossRefGoogle Scholar
  5. Brown, M. J. F., Loosli, R., Schmid-Hempel, P. (2000). Condition-dependent expression of virulence in a trypanosome infecting bumblebees. Oikos 91 (3), 421–427.CrossRefGoogle Scholar
  6. Cameron, S. A., Lozier, J. D., Strange, J. P., Koch, J. B., Cordes, N., Solter, L. F., Griswold, T. L. (2011). Patterns of widespread decline in North American bumble bees. Proc. Natl. Acad. Sci. U. S. A. 108 (2), 662–667.CrossRefGoogle Scholar
  7. Colla, S. R., Otterstatter, M. C., Gegear, R. J., Thomson, J. D. (2006). Plight of the bumble bee: pathogen spillover from commercial to wild populations. Biol. Conserv. 129 (4), 461–467.CrossRefGoogle Scholar
  8. Cremer, S., Armitage, S. A. O., Schmid-Hempel, P. (2007). Social immunity. Curr. Biol. 17 (16), 693–702.CrossRefGoogle Scholar
  9. Durrer, S., Schmid-Hempel, P. (1994). Shared use of flowers leads to horizontal pathogen transmission. Proc. R. Soc. B Biol. Sci. 258 (1353), 299–302.CrossRefGoogle Scholar
  10. European Commission (1992). Council Directive 92/65/EEC. No. L 268/54.Google Scholar
  11. Foulis, E. S. J., Goulson, D. (2014). Commercial bumble bees on soft fruit farms collect pollen mainly from wildflowers rather than the target crops. J. Apic. Res. 53 (3), 404–407.CrossRefGoogle Scholar
  12. Freshuelva (2015). http://www.freshuelva.es/ (Accessed 13 November 2015).
  13. Fürst, M. A., McMahon, D. P., Osborne, J. L., Paxton, R. J., Brown, M. J. F. (2014). Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 506 (7488), 364–366.CrossRefGoogle Scholar
  14. Geslin, B., Aizen, M. A., Garcia, N., Pereira, A.-J., Vaissière, B. E., Garibaldi, L. A. (2017). The impact of honey bee colony quality on crop yield and farmers’ profit in apples and pears. Agric. Ecosyst. Environ. 248, 153–161.CrossRefGoogle Scholar
  15. Goka, K., Okabe, K., Yoneda, M. (2006). Worldwide migration of parasitic mites as a result of bumblebee commercialization. Popul. Ecol. 48 (4), 285–291.CrossRefGoogle Scholar
  16. Goka, K., Okabe, K., Niwa, S., Yoneda, M. (2000). Parasitic mite infestation in introduced colonies of European bumblebees, Bombus terrestris. Japanese J. Appl. Entomol. Zool. 44 (1), 47–50.CrossRefGoogle Scholar
  17. González-Varo, J. P., Vilà, M. (2017). Spillover of managed honeybees from mass-flowering crops into natural habitats. Biol. Conserv. 212, 376–382.CrossRefGoogle Scholar
  18. Goulson, D. (2010). Bumblebees: behaviour, ecology, and conservation. 2nd ed. Oxford University Press, Oxford, UK.Google Scholar
  19. Goulson, D., Hughes, W. O. H. (2015). Mitigating the anthropogenic spread of bee parasites to protect wild pollinators. Biol. Conserv. 191, 10–19.CrossRefGoogle Scholar
  20. Goulson, D., O’Connor, S., Park, K. J. (2018). The impacts of predators and parasites on wild bumblebee colonies. Ecol. Entomol. 43 (2), 168–181.CrossRefGoogle Scholar
  21. Graystock, P., Goulson, D., Hughes, W. O. H. (2014). The relationship between managed bees and the prevalence of parasites in bumblebees. PeerJ 2, e522.CrossRefGoogle Scholar
  22. Graystock, P., Goulson, D., Hughes, W. O. H. (2015). Parasites in bloom: flowers aid dispersal and transmission of pollinator parasites within and between bee species. Proc. R. Soc. B Biol. Sci. 282 (1813), 20151371.CrossRefGoogle Scholar
  23. Graystock, P., Yates, K., Darvill, B., Goulson, D., Hughes, W. O. H. (2013a). Emerging dangers: deadly effects of an emergent parasite in a new pollinator host. J. Invertebr. Pathol. 114 (2), 114–119.CrossRefGoogle Scholar
  24. Graystock, P., Blane, E. J., McFrederick, Q. S., Goulson, D., Hughes, W. O. H. (2016a). Do managed bees drive parasite spread and emergence in wild bees? Int. J. Parasitol. Parasites Wildl. 5 (1), 64–75.CrossRefGoogle Scholar
  25. Graystock, P., Meeus, I., Smagghes, G., Goulson, D., Hughes, W. O. H. (2016b). The effects of single and mixed infections of Apicystis bombi and deformed wing virus in Bombus terrestris. Parasitology, 143 (3), 358–365.CrossRefGoogle Scholar
  26. Graystock, P., Yates, K., Evison, S. E. F., Darvill, B., Goulson, D., Hughes, W. O. H. (2013b). The Trojan hives: pollinator pathogens, imported and distributed in bumblebee colonies. J. Appl. Ecol. 50 (5), 1207–1215.Google Scholar
  27. Herrera, J. (1988). Pollination relationships in southern Spanish Mediterranean shrublands. J. Ecol. 76 (1), 274–287.CrossRefGoogle Scholar
  28. Imhoof, B., Schmid-Hempel, P. (1999). Colony success of the bumble bee, Bombus terrestris, in relation to infections by two protozoan parasites, Crithidia bombi and Nosema bombi. Insectes Soc. 46 (3), 233–238.CrossRefGoogle Scholar
  29. Inoue, M. N., Yokoyama, J., Washitani, I. (2008). Displacement of Japanese native bumblebees by the recently introduced Bombus terrestris (L.) (Hymenoptera: Apidae). J. Insect Conserv. 12 (2), 135–146.CrossRefGoogle Scholar
  30. Ishii, H. S., Kadoya, T., Kikuchi, R., Suda, S. I., Washitani, I. (2008). Habitat and flower resource partitioning by an exotic and three native bumble bees in central Hokkaido, Japan. Biol. Conserv. 141 (10), 2597–2607.CrossRefGoogle Scholar
  31. Jabal-Uriel, C., Martín-Hernández, R., Ornosa, C., Higes, M., Berriatúa, E., De la Rúa, P. (2017). First data on the prevalence and distribution of pathogens in bumblebees (Bombus terrestris and Bombus pascuorum) from Spain. Spanish J. Agric. Res. 15 (1), 1–6.CrossRefGoogle Scholar
  32. Kuznetsova, A., Brockhoff, P. B., Christensen, R. H. B. (2013). lmerTest: Test for random and fixed effects for linear mixed effect models (lmer objects of lme4 package). R package version 2.0-30.Google Scholar
  33. Macfarlane, R. P., Lipa, J. J., Liu, H. J. (1995). Bumble bee pathogens and internal enemies. Bee World, 76 (3), 130–148.CrossRefGoogle Scholar
  34. Magrach, A., González-Varo, J. P., Boiffier, M., Vilà, M., Bartomeus, I. (2017). Honeybee spillover reshuffles pollinator diets and affects plant reproductive success. Nat. Ecol. Evol. 1 (9), 1299–1307.CrossRefGoogle Scholar
  35. Matsumura, C., Yokoyama, J., Washitani, I. (2004). Invasion status and potential ecological impacts of an invasive alien bumblebee, Bombus terrestris L. (Hymenoptera: Apidae) naturalized in Southern Hokkaido, Japan. Glob. Environ. Res. 8 (1), 51–66.Google Scholar
  36. Meeus, I., Brown, M. J. F., De Graaf, D. C., Smagghe, G. (2011). Effects of invasive parasites on bumble bee declines. Conserv. Biol. 25 (4), 662–671.CrossRefGoogle Scholar
  37. Morales, C. L., Arbetman, M. P., Cameron, S. A., Aizen, M. A. (2013). Rapid ecological replacement of a native bumble bee by invasive species. Front. Ecol. Environ. 11 (10), 529–534.CrossRefGoogle Scholar
  38. Murray, T. E., Coffey, M. F., Kehoe, E., Horgan, F. G. (2013). Pathogen prevalence in commercially reared bumble bees and evidence of spillover in conspecific populations. Biol. Conserv. 159, 269–276.CrossRefGoogle Scholar
  39. Ono, M. (1997). Ecological implications of introduced Bombus terrestris, and significance of domestication of Japanese native bumblebees (Bombus spp.). Proc. Int. Work. Biol. Invasions Ecosyst. by Pests Benef. Org. NIAES, Minist. Agric. For. Fish. Japan, Tsukuba, pp. 244–252.Google Scholar
  40. Osborne, J. L., Martin, A. P., Carreck, N. L., Swain, J. L., Knight, M. E., Goulson, D., Hale, R. J., Sanderson, R. A. (2008). Bumblebee flight distances in relation to the forage landscape. J. Anim. Ecol. 77 (2), 406–415.CrossRefGoogle Scholar
  41. Otterstatter, M. C., Whidden, T. L. (2004). Patterns of parasitism by tracheal mites (Locustacarus buchneri) in natural bumble bee populations. Apidologie 35 (4), 351–357.CrossRefGoogle Scholar
  42. Otterstatter, M. C., Gegear, R. J., Colla, S. R., Thomson, J. D. (2005). Effects of parasitic mites and protozoa on the flower constancy and foraging rate of bumble bees. Behav. Ecol. Sociobiol. 58 (4), 383–389.CrossRefGoogle Scholar
  43. Otti, O., Schmid-Hempel, P. (2007). Nosema bombi: a pollinator parasite with detrimental fitness effects. J. Invertebr. Pathol. 96 (2), 118–124.CrossRefGoogle Scholar
  44. Potts, S. G., Imperatriz-Fonseca, V., Ngo, H. T., Aizen, M. A., Biesmeijer, J. C., et al. (2016). Safeguarding pollinators and their values to human well-being. Nature, 540 (7632), 220–229.CrossRefGoogle Scholar
  45. R Core Team. (2014). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
  46. van Ravestijn, W., van der Sande, J. (1991). Use of bumblebees for the pollination of glasshouse tomatoes. Acta Hortic. 288, 204–212.Google Scholar
  47. Rutrecht, S. T., Brown, M. J. F. (2009). Differential virulence in a multiple-host parasite of bumble bees: resolving the paradox of parasite survival? Oikos 118 (6), 941–949.CrossRefGoogle Scholar
  48. Rutrecht, S. T., Klee, J., Brown, M. J. F. (2007). Horizontal transmission success of Nosema bombi to its adult bumble bee hosts: effects of dosage, spore source and host age. Parasitology 134 (12), 1719–1726.CrossRefGoogle Scholar
  49. Sachman-Ruiz, B., Narváez-Padilla, V., Reynaud, E. (2015). Commercial Bombus impatiens as reservoirs of emerging infectious diseases in central México. Biol. Invasions 17 (7), 2043–2053.CrossRefGoogle Scholar
  50. Schmid-Hempel, P. (1998). Parasites in social insects. Princeton University Press.Google Scholar
  51. Schmid-Hempel, P. (2005). Evolutionary ecology of insect immune defenses. Annu. Rev. Entomol. 50, 529–551.CrossRefGoogle Scholar
  52. Schmid-Hempel, R., Müller, C. B. (1991). Do parasitized bumblebees forage for their colony? Anim. Behav. 41 (5), 910–912.CrossRefGoogle Scholar
  53. Schmid-Hempel, R., Schmid-Hempel, P. (1996). Larval development of two parasitic flies (Conopidae) in the common host Bombus pascuorum. Ecol. Entomol. 21 (1), 63–70.CrossRefGoogle Scholar
  54. Schmid-Hempel, R., Eckhardt, M., Goulson, D., Heinzmann, D., Lange, C., Plischuk, S., Escudero, L. R., Salathé, R., Scriven, J. J., Schmid-Hempel, P. (2014). The invasion of southern South America by imported bumblebees and associated parasites. J. Anim. Ecol. 83 (4), 823–837.CrossRefGoogle Scholar
  55. Stout, J. C., Morales, C. L. (2009). Ecological impacts of invasive alien species on bees. Apidologie 40 (3), 388–409.CrossRefGoogle Scholar
  56. Trillo, A., Herrera, J. M., Vilà, M. (2018). Managed bumble bees increase flower visitation but not fruit weight in polytunnel strawberry crops. Basic Appl. Ecol., 30, 32–40.CrossRefGoogle Scholar
  57. Trillo, A., Montero-Castaño, A., González-Varo, J. P., González-Moreno, P., Ortiz-Sánchez, F. J., Vilà, M. (2019). Contrasting occurrence patterns of managed and native bumblebees in natural habitats across a greenhouse landscape gradient. Agric. Ecosyst. Environ., 272, 230–236.CrossRefGoogle Scholar
  58. Velthuis, H. H. W., van Doorn, A. (2006). A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie, 37(4), 421–451.CrossRefGoogle Scholar
  59. Whitehorn, P. R., Tinsley, M. C., Brown, M. J. F., Goulson, D. (2013). Investigating the impact of deploying commercial Bombus terrestris for crop pollination on pathogen dynamics in wild bumble bees. J. Apic. Res. 52 (3), 149–157.CrossRefGoogle Scholar
  60. Yoneda, M., Furuta, H., Kanbe, Y., Tsuchida, K., Okabe, K., Goka, K. (2008). Commercial colonies of Bombus terrestris (Hymenoptera: Apidae) are reservoirs of the tracheal mite Locustacarus buchneri (Acari: Podapolipidae). Appl. Entomol. Zool. 43 (1), 73–76.CrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Estación Biológica de Doñana (EBD-CSIC)SevillaSpain
  2. 2.School of Biological SciencesRoyal Holloway University of LondonEghamUK

Personalised recommendations