, Volume 50, Issue 1, pp 80–89 | Cite as

Epithelial remodelling of the midgut in the post-embryonic development of Partamona helleri (Apidae, Meliponini)

  • Renan dos Santos AraujoEmail author
  • Kenner Morais Fernandes
  • Marcos Pereira Lopes
  • Gustavo Ferreira Martins
  • Mara Garcia Tavares
Original article


In this work, we describe the changes that occur in the midgut during metamorphosis of Partamona helleri, a species of stingless bees found in Neotropical regions. Morphology and immunofluorescence data were analysed in larvae, pupae and adults. The intestinal epithelium presented morphological variations between the different stages of development, including the size of the striated border. Cells undergoing apoptosis and autophagy were observed in practically all stages, with the autophagy process prevailing over apoptosis in most stages, except in post-defecating larvae. The quantity of cells in oxidative stress increased in the pupae stage, especially in the black-eyed and pink-eyed pupae, and decreased in the adult stage. Cell proliferation, on the other hand, was more evident in black-eyed pupae, mainly in the stage with the highest number of cells in autophagy. In general, the results contributed to a better understanding of morphogenesis of the stingless bee digestive system.


stingless bees apoptosis autophagy cell proliferation oxidative stress 



The authors thank at the Central Apiary at the Federal University of Viçosa for technical assistance.

Authors’ contributions

RA, KF and ML conceived this research and designed experiments; RA and MT participated in the design and interpretation of the data; RA, ML and KF performed experiments and analysis; RA, MT and GM wrote the paper and participated in the revisions of it. All authors read and approved the final manuscript.


This study was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no potential conflict of interest in relation to the study in this paper.


  1. Antonini, Y., Martins, R. P., Aguiar, L. M., Loyola, R. D. (2013) Richness, composition and trophic niche of stingless bee assemblages in urban forest remnants. Urban Ecosyst. 16, 527–541.CrossRefGoogle Scholar
  2. Batista, M. A., Ramalho, M., Soares, A. E. E. (2003) Nesting sites and abundance of Meliponini (Hymenoptera: Apidae) in heterogeneous habitats of the Atlantic Rain Forest, Bahia, Brazil. Lundiana 4 (1), 19–23.Google Scholar
  3. Bernardes, R. C., Barbosa, W. F., Martins, G. F., Lima, M. A. P. (2018) The reduced-risk insecticide azadirachtin poses a toxicological hazard to stingless bee Partamona helleri (Friese, 1900) queens. Chemosphere 201, 550–556.CrossRefGoogle Scholar
  4. Brito, R. M., Arias, M. C. (2010) Genetic structure of Partamona helleri (Apidae, Meliponini) from Neotropical Atlantic rainforest. Insect. Soc. 57, 413–419.CrossRefGoogle Scholar
  5. Camargo, J. M., Pedro, S. R. (2003) Meliponini neotropicais: o gênero Partamona Schwarz, 1939 (Hymenoptera, Apidae, Apinae) - bionomia e biogeografia. Rev. Bras. Ent. 47 (3), 311–372.CrossRefGoogle Scholar
  6. Camargo, J. M., Pedro, S. R. (2013) Meliponini Lepeletier, 1836. In Moure, JS., Urban D & Melo GAR (Orgs). Catalogue of Bees (Hymenoptera, Apoidea) in the Neotropical Region - online version. Available at (accessed on 03 April, 2018)
  7. Couvillon, M. J., Wensellers, T., Imperatriz-Fonseca, V. L., Nogueira-Neto, P., Ratnieks, F. L. W. (2007) Comparative study in stingless bees (Meliponini) demonstrates that nest entrance size predicts traffic and defensivity. J. Evol. Biol. 2, 194–201.Google Scholar
  8. Cruz, L. C., Araujo, V. A. Dolder, H., Neves, C. A. (2007) Midgut ultrastructure of queens and foraging workers of Melipona quadrifasciata anthidioides (Hymenoptera, Apidae, Meliponini). Sociobiology 50, 1117–1125.Google Scholar
  9. Cruz, L. C., Araújo, V. A., Dolder, H., Araújo, A. P., Serrão, J. E., Neves, C. A. (2011) Morphometry of the midgut of Melipona quadrifasciata anthidioides (Lepeletier) (Hymenoptera: Apidae) during metamorphosis. Neotrop Entomol. 40 (6), 677–681.CrossRefGoogle Scholar
  10. Cruz, L. C., Araújo, V. A., Fialho, M. C. Q., Serrão, J. E., Neves, C. A. (2013) Proliferation and cell death in the midgut of the stingless bee Melipona quadrifasciata anthidioides (Apidae, Meliponini) during metamorphosis. Apidologie, 44, 458–66.CrossRefGoogle Scholar
  11. Cruz-Landim, C., Cavalcante, V. M. (2003) Ultrastructural and cytochemical aspects of metamorphosis in the midgut of Apis mellifera L. (Hymenoptera: Apidae: Apinae). Zool. Sci. 20 (9), 1099–1107.CrossRefGoogle Scholar
  12. Cruz-Landim, C., Mello, M. L. S. (1970) Post-embryonic changes in Melipona quadrifasciataanthidioides Lep. IV. Development of the digestive tract (1). Boletim do Instituto de Biociências daUniversidade de São Paulo. Nova Série, Zoologia e Biologia Marinha, 27 (27), 229–263.Google Scholar
  13. Fernandes, K. M., Araújo, V. A., Serrão, J. E., Martins, G. F., Campos, L. A. O., Neves, C. A. (2010) Quantitative analysis of the digestive and regenerative cells of the midgut of Melipona quadrifasciata anthidioides (Hymenoptera: Apidae). Sociobiology 56 (2), 489–505.Google Scholar
  14. Fernandes, C. R. M., Almeida, A. B., Del Lama, M. A., Martins, C. F. (2017) Nesting substrate characteristics of Partamona seridoensis Pedro & Camargo (Hymenoptera: Apidae) in areas of dry forest in Brazil. Sociobiology 64 (1), 26–32.CrossRefGoogle Scholar
  15. Francisco, F. O., Brito, R. M., Arias, M. C. (2006) Alelle number and heterozigosity for microsatellite loci in different stingless bee species (Hymenoptera: Apidae, Meliponini). Neot. Ent. 35 (5), 638–643.CrossRefGoogle Scholar
  16. Franzetti, E., Huang, Z. J., Shi, Y. X., Xie, K., Deng, X. J., Li, Q. R., Yang, W. Y., Zeng, W. N., Casartelli, M., Deng, H. M. (2012) Autophagy precedes apoptosis during the remodeling of silkworm larval midgut. Apoptosis 17, 305–324.CrossRefGoogle Scholar
  17. Franzetti, E., Romanelli, D., Caccia, S., Cappellozza, S., Congiu, T., Rajagopalan, M., Grimaldi, A., Eguileor, M., Casartelli, M., Tettamanti, G. (2015) The midgut of the silkmoth Bombyx mori is able to recycle molecules derived from degeneration of the larval midgut epithelium. Cell Tissue Res. 361, 509–528.CrossRefGoogle Scholar
  18. Franzetti, E., Casartelli, M., D'Antona, P., Montali, A., Romanelli, D., et al. (2016) Midgut epithelium in molting silkworm: A fine balance among cell growth, differentiation, and survival. Arth. Struc. Develop. 45, 368–379.CrossRefGoogle Scholar
  19. Gonçalves, W. G., Fernandes, K. M., Gonçalves, M. P., Martins, G. F., Zanuncio, J. C., Serrão, J. E. (2013) The midgut of the parasitoid Campoletis flavicincta (Hymenoptera: Ichneumonidae). Flor. Ent. 96 (3), 1016–1022.CrossRefGoogle Scholar
  20. Gonçalves, W. G., Fernandes, K. M., Barcellos, M. S., Silva, F. P., Magalães-Jr, M. J., Zanuncio, J. C., Martins, G. F., Serrão, J. E. (2014) Ultrastructure and Immunofluorescence of the midgut of Bombus morio (Hymenoptera: Apidae: Bombini). C. R. Biologies. 337 (6), 365–372.CrossRefGoogle Scholar
  21. Gonçalves, W. G., Fernandes, K. M., Santana, W. C., Martins, G. F., Zanuncio, J. C., Serrão, J. E. (2017) Post-embryonic changes in the hindgut of honeybee Apis mellifera workers: Morphology, cuticle deposition, apoptosis, and cell proliferation. Dev. Biol. 431, 194–204.CrossRefGoogle Scholar
  22. Hakim, R. S., Baldwin, K., Smagghe, G. (2010) Regulation of midgut growth, development, and metamorphosis. Annu. Rev. Entomol. 55, 593–608.CrossRefGoogle Scholar
  23. Illa-Bochaca, I., Montuenga, L.M. (2006) The regenerative nidi of the locust midgut as a model to study epithelial cell differentiation from stem cells. J. Exp. Bio. 209, 2215–2223.CrossRefGoogle Scholar
  24. Li, H. M., Sun, L., Mittapalli, O., Muir, W. M., Xie, J., Wu, J., Schemerhorn, B. J., Sun, W., Pittendrigh, B. R., Murdock, L. L. (2009) Transcriptional signatures in response to wheat germ agglutinin and starvation in Drosophila melanogaster larval midgut. Ins. Mol. Bio. 18 (1), 21–31.CrossRefGoogle Scholar
  25. Lopes, M. P., Fernandes, K. M., Tomé, H. V. V., Gonçalves, W. G., Miranda, F. R., Serrão, J. E., Martins, G. F. (2018) Spinosad-mediated effects on the walking abilities, midgut, and Malpighian tubules of Africanized honey bee workers. Pest Management Science,
  26. Malaspina, O., Silva-Zacarin, E. C. M. (2006) Cell markers for ecotoxicological studies in target organs of bees. Braz. J. Morphol. Sci. 23 (3–4), 303–309.Google Scholar
  27. Malta, J., Heerman, M., Weng, J. L., Fernandes, K. M., Martins, G. F., Ramalho-Ortigão, M. (2017) Midgut morphological changes and autophagy during metamorphosis in sand flies. Cell Tissue Res. 368, 513–529.CrossRefGoogle Scholar
  28. Marthe, J. B., Tavares, M. G., Campus, L. A. O. (2007) Genetic variability in Partamona helleri (Hymenoptera: Apidae) populations with and without B chromosomes. Biosc. J. 23, 52–57.Google Scholar
  29. Martins, G. F., Neves, C. A., Campos, L. A. O., Serrão, J. E. (2006) The regenerative cells during the metamorphosis in the midgut of bees. Micron 37, 161–168.CrossRefGoogle Scholar
  30. Martins, C. C. C., Duarte, O. M. P., Waldschmidt, A. M., Alves, R. M. D. O., Costa, M. A. (2009) New occurrence of B chromosomes in Partamona helleri (Friese, 1900) (Hymenoptera, Meliponini). Gen. Mol. Bio. 32 (4), 782–785.CrossRefGoogle Scholar
  31. McGregor, S. E. (1976) Insect pollination of cultivated crop plants (Vol. 496). Washington, DC:Agricultural Research Service, US Department of Agriculture.Google Scholar
  32. Miranda, E. A., Ferreira, K. M., Carvalho, A. T., Martins, C. F., Fernandes, C. R., Del Lama, M. A. (2017) Pleistocene climate changes shaped the population structure of Partamona seridoensis (Apidae, Meliponini), an endemic stingless bee from the Neotropical dry forest. PloS One 12 (4), 1–13.Google Scholar
  33. Nagy, P., Sándor, G. O., Juhász, G. (2018) Autophagy maintains stem cells and intestinal homeostasis in Drosophila. Sci. Rep. 8, 1–9.CrossRefGoogle Scholar
  34. Neves, C. A., Gitirana, L. B., Serrão, J. E. (2002) Ultrastructural study of the metamorphosis in the midgut of Melipona quadrifasciata anthidioides (Apidae, Meliponini) worker. Sociobiology, 41 (1), 443–459.Google Scholar
  35. Neves, C. A., Serrão, J. E., Gitirana, L. B. (2003a) FMRFamide-like immunoreacteve endocrine cells in differente castes of Melipona quadrifasciata anthidioides (Apidae; Meliponini). Braz. J. Mor. Sci. 20 (3), 157-164.Google Scholar
  36. Neves, C. A., Gitirana, L. B., Serrão, J. E. (2003b) Ultrastructure of the Midgut Endocrine Cells in Melipona quadrifasciata anthidioides (Hymenoptera, Apidae). Braz. J. Biol. 63 (4), 683–690.CrossRefGoogle Scholar
  37. Romanelli, D., Casati, B., Franzetti, E., Tettamanti, G. (2014) A molecular view of autophagy in Lepidoptera. Biomed. Res. Int.,
  38. Romanelli, D., Casartelli, M., Cappellozza, S., Eguileor, M., Tettamanti, G., 2016. Roles and regulation of autophagy and apoptosis in the remodelling of the lepidopteran midgut epithelium during metamorphosis. Sci. Rep. 6, 1–15.CrossRefGoogle Scholar
  39. SAS Institute 2002. The SAS System for Windows, Release 9.0. Cary, SAS Institute.Google Scholar
  40. Serrão, J.E., Cruz-Landim, C. (1996) Microscopic observations of the digestion condition of pollen grains in the midgut of stingles bee larvae. J. Hym. Res. 5, 259–263.Google Scholar
  41. Silvia, R. M., Camargo, M. F. (2003) Meliponini neotropicais: o gênero Partamona Schwarz, 1939 (Hymenoptera, Apidae). Rev. Bras. Ent. 47, 1–117.Google Scholar
  42. Teixeira, L. V., Campos, F. N. M. (2005) Stingless bees (Hymenoptera, Apidae) flight activity beginning: body size and ambient temperature influence. Rev. Bras. Zooc. 7 (2), 195–202.Google Scholar
  43. Tomé, H. V. V., Barbosa, W. F., Correa, A. S., Gontijo, L. M., Martins, G. F., Guedes, R. N. (2015) Reduced-risk insecticides in Neotropical stingless bee species: impact on survival and activity. Annal. Appl. Bio. 166, 186–196.CrossRefGoogle Scholar
  44. Tosta, V. C., Tavares, M. G., Fernandes-Salomão, T. M., Barros, E. G., Campos, L. A. O., Camacho, J. P. M. (2007) Development of a SCAR marker for the analysis of B chromosome presence in Partamona helleri (Hymenoptera, Apidae). Cytogenet Genome Res. 116 , 127–129.CrossRefGoogle Scholar
  45. Ulukaya, E., Acilan, C., Yilmaz, Y. (2011) Apoptosis: why and how does it occur in biology?. Cell Biochem. Funct. 29, 468–480.CrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Programa de Pós-graduação em Biologia Celular e Estrutural, Departamento de Biologia GeralUniversidade Federal de ViçosaViçosaBrazil
  2. 2.Departamento de Biologia GeralUniversidade Federal de ViçosaViçosaBrazil

Personalised recommendations