Advertisement

Apidologie

pp 1–11 | Cite as

Identification of suitable reference genes for miRNA quantitation in bumblebee (Hymenoptera: Apidae) response to reproduction

  • Jie Dong
  • Jilian Li
  • Jiaxing HuangEmail author
  • Jie WuEmail author
Original article
  • 48 Downloads

Abstract

The precise quantification of microRNAs (miRNAs) expression level is a critical factor in mastering its functions. We evaluate the suitability of two common genes and ten miRNAs as normalizers for miRNA quantification in the head and ovary at different reproductive status of bumblebees, Bombus lantschouensis by using four different algorithms and one consensus rank approach. For the head and ovary combination, miR-275 was the best candidate. For different tissues, miR-275 was the most stable candidate in the head, while the candidate for the ovary was miR-277. To test the best candidate accuracy, miR-315 was demonstrated to be downregulated based on miR-275 normalization in ovipositor bumblebees. The miR-275 and miR-277 combination is identified to be the most reliable and suitable reference genes for the head and ovary of bumblebees.

Keywords

bumblebee microRNAs reference gene real-time quantification normalization 

Notes

Acknowledgements

The authors would like to thank Prof. Jiandong An and Dr. Tolera Kumsa Gemeda for their invaluable comments.

Author’s contributions

JD and JH conceived this research and designed experiments; JH, JL, and JW participated in the design and interpretation of the data; JD performed experiments and analysis; JD and JH wrote the paper and participated in the revisions of it. All authors read and approved the final manuscript.

Funding information

This work was funded by China Agriculture Research System (CARS-44), the Agricultural Science and Technology Innovation Program (CAASASTIP-2018-IAR), and the Natural Science Foundation of China (U1603108).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Supplementary material

13592_2018_616_MOESM1_ESM.pdf (3.4 mb)
ESM 1. (PDF 3483 kb)

References

  1. An, J., Huang, J., Shao, Y., Zhang, S. and Wang, B., et al. (2014) The bumblebees of North China (Apidae, Bombus Latreille). Zootaxa 3830, 1–89.Google Scholar
  2. Andersen, C. L., Jensen, J. L. and Orntoft, T. F. (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64 (15), 5245–5250.CrossRefGoogle Scholar
  3. Baley, J. and Li, J. (2012) MicroRNAs and ovarian function. J. Ovarian Res. 5, 8.CrossRefGoogle Scholar
  4. Bartel, D. P. (2009) MicroRNAs: target recognition and regulatory functions. Cell 136, 215–33.CrossRefGoogle Scholar
  5. Cassol, D., Cruz, F. P., Espindola, K., Mangeon, A. and Müller, C., et al. (2016) Identification of reference genes for quantitative RT-PCR analysis of microRNAs and mRNAs in castor bean (Ricinus communis L.) under drought stress. Plant Physiol. Bioch. 106, 101–107.Google Scholar
  6. de Araujo, M. A., Marques, T. E., Taniele-Silva, J., Souza, F. M. and de Andrade, T. G., et al. (2014) Identification of endogenous reference genes for the analysis of microRNA expression in the hippocampus of the pilocarpine-induced model of mesial temporal lobe epilepsy. PLoS One 9 (6), e100529.Google Scholar
  7. Dheda, K., Huggett, J. F., Bustin, S. A., Johnson, M. A. and Rook, G. (2004) Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques 37, 112–114, 116, 118–119.CrossRefGoogle Scholar
  8. Guo, X., Su, S., Geir, S., Li, W. and Li, Z., et al. (2016) Differential expression of miRNAs related to caste differentiation in the honey bee, Apis mellifera. Apidologie 47 (4), 495–508.Google Scholar
  9. Hornakova, D., Matouskova, P., Kindl, J., Valterova, I. and Pichova, I. (2010) Selection of reference genes for real-time polymerase chain reaction analysis in tissues from Bombus terrestris and Bombus lucorum of different ages. Anal. Biochem. 397 (1), 118–20.CrossRefGoogle Scholar
  10. Huggett, J., Dheda, K., Bustin, S. and Zumla, A. (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes Immun. 6 (4), 279–84.CrossRefGoogle Scholar
  11. Kang, K., Peng, X., Luo, J. and Gou, D. (2012) Identification of circulating miRNA biomarkers based on global quantitative real-time PCR profiling. J. Anim. Sci. Biotechno. 3, 4.CrossRefGoogle Scholar
  12. King, I. N., Qian, L., Liang, J., Huang, Y. and Shieh, J. T. (2011) A genome-wide screen reveals a role for microRNA-1 in modulating cardiac cell polarity. Dev. Cell 20, 497–510.CrossRefGoogle Scholar
  13. Li, D., Liu, H., Li, Y., Yang, M. and Qu, C. (2014) Identification of suitable endogenous control genes for quantitative RT-PCR analysis of miRNA in bovine solid tissues. Mol. Biol. Rep. 41, 6475–6480.CrossRefGoogle Scholar
  14. Li, J., Huang, J., Cai, W., Zhao, Z. and Peng, W., et al. (2010) The vitellogenin of the bumblebee, Bombus hypocrita: studies on structural analysis of the cDNA and expression of the mRNA. J. Comp. Physiol. B. 180 (2), 161–170.Google Scholar
  15. Li, L., Liu, F., Li, W., Li, Z. and Pan, J., et al. (2012) Differences in microRNAs and their expressions between foraging and dancing honey bees, Apis mellifera L. J. Insect Physiol. 58 (11), 1438–43.Google Scholar
  16. Livak, K. J. and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCT Method. Methods 25 (4), 402–8.CrossRefGoogle Scholar
  17. Macedo, L. M. F., Nunes, F. M. F., Freitas, F. C. P., Pires, C. V. and Tanaka, E. D., et al. (2016) MicroRNA signatures characterizing caste-independent ovarian activity in queen and worker honeybees (Apis mellifera L.). Insect Mol. Biol. 25 (3), 216–226.Google Scholar
  18. Manfredini, F., Romero, A. E., Pedroso, I., Paccanaro, A. and Sumner, S., et al. (2017) Neurogenomic signatures of successes and failures in life-history transitions in a key insect pollinator. Genome Biol. Evol. 9 (11), 3059–3072.Google Scholar
  19. Marco, A., Ninova, M. and Griffithsjones, S. (2013) Multiple products from microRNA transcripts. Biochem. Soc. T. 41, 850–854.CrossRefGoogle Scholar
  20. Nunes, F. M. F., Ihle, K. E., Mutti, N. S., Simões, Z. L. and Amdam, G. V. (2013) The gene vitellogenin affects microRNA regulation in honey bee (Apis mellifera) fat body and brain. J. Exp. Biol. 216 (Pt 19), 3724–3732.CrossRefGoogle Scholar
  21. Pfaffl, M. W., Tichopad, A., Prgomet, C. and Neuvians, T. P. (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnol. Lett. 26 (6), 509–15.CrossRefGoogle Scholar
  22. Pihur, V., Datta, S. and Datta, S. (2009) RankAggreg, an R package for weighted rank aggregation. BMC Bioinformatics 10, 62.CrossRefGoogle Scholar
  23. Plasterk, R. H. (2006) Micro RNAs in animal development. Cell 124 (5), 877–81.CrossRefGoogle Scholar
  24. Quah, S., Breuker, C. J. and Holland, P. W. (2015) A Diversity of Conserved and Novel Ovarian MicroRNAs in the Speckled Wood (Pararge aegeria). PLoS One 10 (11), e0142243.CrossRefGoogle Scholar
  25. Rozen, S. and Skaletsky, H. (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132, 365–86.PubMedGoogle Scholar
  26. Serafin, A., Foco, L., Blankenburg, H., Picard, A. and Zanigni, S. (2014) Identification of a set of endogenous reference genes for miRNA expression studies in Parkinson’s disease blood samples. BMC Research Notes 7, 715.CrossRefGoogle Scholar
  27. Silver, N., Best, S., Jiang, J. and Thein, S. L. (2006) Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol. Biol. 7, 33.CrossRefGoogle Scholar
  28. Sun, D., Dong, J., Huang, J., He, S. and Wu, J. (2015) Solexa sequencing and bioinformatics analysis of microRNA in the queen head of the bumblebee, Bombus lantschouensis. Acta Entomol Sin 58 (12), 1291–1299.Google Scholar
  29. Tichopad, A., Didier, A. and Pfaffl, M. W. (2004) Inhibition of real-time RT–PCR quantification due to tissue-specific contaminants. Mol. Cell. Probe. 18, 45–50.CrossRefGoogle Scholar
  30. Vandesompele, J., Preter, K. D., Pattyn, F., Poppe, B. and Roy, N. V. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, 31–34.CrossRefGoogle Scholar
  31. Velthuis, H. H. W. and van Doorn, A. (2006) A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 37 (4), 421–451.CrossRefGoogle Scholar
  32. Williams, P. H., Bystriakova, N., Huang, J., Miao, Z. and An, J. (2015) Bumblebees, climate and glaciers across the Tibetan plateau (Apidae: Bombus Latreille). Syst. Biodivers. 13 (2), 164–181.CrossRefGoogle Scholar
  33. Xie, F., Xiao, P., Chen, D., Xu, L. and Zhang, B. (2012) miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol. Biol. 80 (1), 75–84.CrossRefGoogle Scholar
  34. Yeninar, H., Duchateau, M. J., Kaftanoglu, O. and Velthuis, H. (2000) Colony developmental patterns in different local populations of the Turkish bumble bee, Bombus terrestris dalmatinus. J. Apicult. Res. 39, 107–116.CrossRefGoogle Scholar
  35. You, H., Wan, H., Li, J. and Jin, B. R. (2010) Molecular cloning and characterization of a short peptidoglycan recognition protein (PGRP-S) with antibacterial activity from the bumblebee Bombus ignitus. Dev. Comp. Immunol. 34 (9), 977–985.CrossRefGoogle Scholar
  36. Zhou, Z., Zhang, H., Liang, C., Zou, Y. and Dong, J., et al. (2015) Foraging preference of the honeybee Apis mellifera and the bumblebee Bombus lantschouensis (Hymenoptera: Apidae) in peach greenhouse. Acta Entomol. Sin. 58, 1315–1321.Google Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture, Institute of Apicultural ResearchChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China
  2. 2.Institute of Animal Husbandry and Veterinary ScienceZhejiang Academy of Agricultural SciencesHangzhouPeople’s Republic of China

Personalised recommendations