, Volume 49, Issue 6, pp 838–851 | Cite as

Adding attractive semio-chemical trait refines the taxonomy of Alpinobombus (Hymenoptera: Apidae)

  • Baptiste MartinetEmail author
  • Nicolas Brasero
  • Thomas Lecocq
  • Paolo Biella
  • Irena Valterová
  • Denis Michez
  • Pierre Rasmont
Original article


Species taxonomy of bumblebees (Bombus Latreille, 1802) is well known to be problematic due to a potentially high intra-specific variability of morphological traits while different species can converge locally to the same color pattern (cryptic species). Assessing species delimitation remains challenging because it requires to arbitrarily select variable traits whose accuracy continues to be debated. Integrative taxonomic approach seems to be very useful for this group as different independent traits are assessed to propose a rational taxonomic hypothesis. Among operational criteria to assess specific status, the reproductive traits involved in the pre-mating recognition (i.e., the male cephalic labial gland secretions, CLGS) have been premium information. Since these secretions are supposed to be species-specific, these chemical traits can bring essential information where species delimitation is debated. Here, we describe and compare the CLGS of 161 male specimens of nine Alpinobombus taxa: alpinus, balteatus, helleri, hyperboreus, kirbiellus, natvigi, neoboreus, polaris, and pyrrhopygus. We aim also to test the congruence between this new information (reproductive traits) and published genetic dataset. Our results emphasized six distinct groups with diagnostic major compounds: (a) alpinus + helleri with hexadec-9-en-1-ol; (b) polaris + pyrrhopygus with two major compounds hexadec-9-en-1-ol and hexadec-9-enal; (c) balteatus with tetradecyl acetate; (d) kirbiellus with geranyl geranyl acetate; (e) hyperboreus + natvigi with octadec-11-en-1-ol; (f) neoboreus with octadec-9-en-1-ol. Based on this new information, we can confirm the species status of B. alpinus, B. balteatus, B. hyperboreus, B. kirbiellus, B. neoboreus, and B. polaris. We also confirm the synonymy of helleri (Alps) with alpinus (Sweden). However, the specific status of natvigi (Alaska) and pyrrhopygus (Sweden) is questionable and these taxa do not have specific CLGS composition.


bumblebees species cephalic labial gland secretions arcto-alpine distribution chemical trait 



The authors thank the Abisko (Sweden), Tarfala (Sweden), Toolik field (USA), Kluane lake (Canada), and Khanymey (W-Siberia) scientific stations for their hospitality and their help in material collection. We acknowledge Hannele Savela (Oulu University, INTERACT administration) for her help in administration process. We thank also K. Urbanová (Institute of Organic Chemistry and Biochemistry ASCR) for her help in chemical analyses. The research leading to these results received funding from the European Union’s Horizon 2020 project INTERACT, under grant agreement no. 730938. BM contributes as PhD student granted by the FRS-FNRS (Fonds de la Recherche Scientifique). PB contributes as a PhD student funded by the Czech Science Foundation (GACR GP14-10035P) and by the University of South Bohemia (GA JU 152/2016/P). The authors thank the Parco Nazionale dello Stelvio for granting permission to collect in their respective territories to the author PB.

Author contribution

Conceived and designed the experiments: BM NB TL PR. Material Collection: BM NB PB PR. Experimentation: BM. Analyzed the data: BM IV. Wrote the paper: BM NB TL PB IV DM PR

Supplementary material

13592_2018_611_MOESM1_ESM.xlsx (18 kb)
Table S1. Table of sampling. Sample code refers to the sample label used in different analyses. All specimens are males. (XLSX 17 kb)
13592_2018_611_MOESM2_ESM.xlsx (1.5 mb)
Appendix S2. Data matrix of cephalic labial gland secretions with minimum, median and maximum of relative concentration of each compound), list of the identified compounds and IndVal analysis with species-specific compounds. Unknown x are undetermined compounds. (XLSX 1518 kb)


  1. Andriollo T., Naciri Y., Ruedi M. (2015) Two mitochondrial barcodes for one biological species: the case of European Kuhl's Pipistrelles (Chiroptera). Plos One, 10, e0134881.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ayasse M., Jarau S. (2014) Chemical ecology of bumble bees. Annu. Rev. Entomol. 59, 299–319.CrossRefPubMedGoogle Scholar
  3. Baer B. (2003) Bumblebees as model organisms to study male sexual selection in social insects. Behav. Ecol. Sociobiol. 54, 521–533.CrossRefGoogle Scholar
  4. Batalha-Filho H., Waldschmidt A., Campos L.A.O., Tavares M.G., Fernandes-Salomao T. (2010) Phylogeography and historical demography of the Neotropical stingless bee Melipona quadrifasciata (Hymenoptera, Apidae): incongruence between morphology and mitochondrial DNA. Apidologie, 4, 534–547.CrossRefGoogle Scholar
  5. Berezin M.V. (1995) Geographical Diversity, Species Correlation, Population Structure and Cenotic Interactions of Arctic Bumble Bees (Apidae, Bombus), in: Grönlund E., Melander O. (ed.) Swedish-Russian Tundra Ecology. Expedition-94. Swedish Polar Research Secretariat, Stockholm, pp. 205–215.Google Scholar
  6. Bergman P. (1997) Chemical Communication in Bumblebee Premating Behaviour. PhD thesis, Göteborg University, Sweden.Google Scholar
  7. Bertsch A., Schweer H. (2011) Labial gland marking secretions of male Bombus lucorum bumblebees from Europe and China reveal two separate species: B. lucorum (Linnaeus 1761) and Bombus minshanicola (Bischoff 1936). Biochem.Syst Ecol. 39 (4-6), 587-593.CrossRefGoogle Scholar
  8. Bertsch A., Schweer H. (2012) Cephalic labial gland secretions of males as species recognition signals in bumblebees: are there really geographical variations in the secretions of the Bombus terrestris subspecies? Beiträge zur Entomologie, 62, 103–124.Google Scholar
  9. Bergström G., Svensson B.G. (1973) Studies on natural odoriferous compounds VIII. Characteristic marking secretions of two forms lapponicus and scandinavicus of B. lapponicus Fabr. (Hymenoptera, Apidae). Chemica Scripta, 4, 231–239.Google Scholar
  10. Bickford D., Lohman D.J., Sodhi N.S., Ng P.K.L., Meier R., Winker K., Ingram K.K., Das I. (2007) Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22, 148–155.CrossRefPubMedGoogle Scholar
  11. Biella P., Bogliani G., Cornalba M., Manino A., Neumayer J., Porporato M., Rasmont P., Milanesi P. (2017) Distribution patterns of the cold adapted bumblebee Bombus alpinus in the Alps and hints of an uphill shift (Insecta: Hymenoptera: Apidae). J. Ins. Conserv. 21(2), 357-366.CrossRefGoogle Scholar
  12. Brasero N., Martinet B., Urbanová K., Valterová I., Torres A., Hoffmann W., Rasmont P., Lecocq T. (2015) First chemical analysis and characterization of the male species-specific cephalic labial gland secretions of South American bumblebee. Chem. Biodivers. 12 (10), 1535-1546.CrossRefPubMedGoogle Scholar
  13. Brasero N., Lecocq T., Martinet B., Valterová I., Urbanová K., de Jonghe R. (2017) Variability in Sexual Pheromones Questions their Role in Bumblebee Pre-Mating Recognition System. J. Chem. Ecol.
  14. Carolan J.C., Murray T.E., Fitzpatrick U., Crossley J., Schmidt H., Cederberg B., McNally L., Paxton R.J., Williams P.H., Brown M.J.F. (2012) Colour patterns do not diagnose species: quantitative evaluation of a DNA barcoded cryptic bumblebee complex. PLoS One, 7, e29251.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Claudet J., Pelletier D., Jouvenel J.Y., Bachet F., Galzin R. (2006) Assessing the effects of Marine Protected Area (MPA) on a reef fish assemblage in a northwestern Mediterranean marine reserve: identifying community-based indicators. Biol. Conserv. 130, 346-369.CrossRefGoogle Scholar
  16. Coppée A., Terzo M., Valterova I., Rasmont P. (2008) Intraspecific variation of the cephalic labial gland secretions in Bombus terrestris (L.) (Hymenoptera: Apidae). Chem. Biodivers. 5, 2654–2661.CrossRefPubMedGoogle Scholar
  17. Cruaud A., Gautier M., Galan M., Foucaud J., Sauné L., Genson G., Dubois E., Nidelet S., Deuve T. and Rasplus J.-Y. (2014) Empirical Assessment of RAD Sequencing for Interspecific Phylogeny. Mol. Biol. Evol. 31, 1272–1274.CrossRefPubMedGoogle Scholar
  18. Dellicour S., Lecocq T. (2013a) GCALIGNER 1.0 and GCKOVATS 1.0 – Manual of a Software Suite to Compute a Multiple Sample Comparison Data Matrix from Eco-chemical Datasets Obtained by Gas Chromatography. University of Mons, Mons.Google Scholar
  19. Dellicour S., Lecocq T. (2013b) GCALIGNER 1.0: an alignment program to compute a multiple sample comparison data matrix from large eco-chemical datasets obtained by GC. J. Sep. Sci. 36, 3206–3209.PubMedGoogle Scholar
  20. De Meulemeester T., Gerbaux P., Boulvin M., Coppee A., Rasmont P. (2011) A simplified protocol for bumble bee species identification by cephalic secretion analysis. Insectes Sociaux 58, 227–236.CrossRefGoogle Scholar
  21. De Queiroz K. (2007) Species concepts and species delimitation. Syst. Biol. 56, 879–886.CrossRefPubMedGoogle Scholar
  22. Dufrene M., Legendre P. (1997) Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366.Google Scholar
  23. Engel M.S. (2011) Systematic melittology: where to from here? Syst. Entomol. 36, 2–15.Google Scholar
  24. Eriksen B., Molau U., Svensson M. (2006) Reproductive strategies in two arctic Pedicularis species (Scrophulariaceae). Ecography, 16 (2), 154-166CrossRefGoogle Scholar
  25. Glaser N., Frérot B., Leppik E., Monsempes C., Capdevielle-Dulac C., Le Ru B., Lecocq T., Harry M., Jacquin-Joly E., Calatayud P.-A. J. (2014) Similar Differentiation Patterns Between PBP Expression Levels and Pheromone Component Ratios in Two Populations of Sesamia nonagrioides. Chem. Ecol. 40, 923-927.CrossRefGoogle Scholar
  26. Goulson D. ( 2010) Bumblebees : Behaviour Ecology, and Conservation. Oxford University Press, Oxford, 336 p.Google Scholar
  27. Heinrich B. (2005) Bumblebee economics. Harvard University Press, Cambridge, London, England, 245p.Google Scholar
  28. Hovorka O., Valterová I., Rasmont P., Terzo M. (2006) Male cephalic labial gland secretions of two bumblebee species of the subgenus Cullumanobombus (Hymenoptera: Apidae: Bombus Latreille) and their distribution in Central Europe. Chem. Biodivers. 3, 1015-1022.CrossRefPubMedGoogle Scholar
  29. Kevan P.G. (1973) Flowers, insects, and pollination ecology in the Canadian high Arctic. Polar Record, 16, 667–674.CrossRefGoogle Scholar
  30. Klein A.M., Vaissière B.E., Cane J.H., Steffan-Dewenter I., Cunningham S.A., Kremen C., Tscharntke T. (2007) Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 274, 303–313.CrossRefGoogle Scholar
  31. Kullenberg B., Bergstrøm G., Stallberg-Stenhagen S. (1970) Volatile Components of the Cephalic Marking Secretion of Male Bumble Bees. Acta Chem. Scand. 24, 1481.CrossRefPubMedGoogle Scholar
  32. Lecocq T., Dellicour S., Michez D., Dehon M., Dewulf A., De Meulemeester T., Brasero N., Valterova I., Rasplus J.Y., Rasmont P. (2015) Methods for species delimitation in bumblebees (Hymenoptera, Apidae, Bombus): towards an integrative approach. Zool. Scripta 44, 281–297.Google Scholar
  33. Löfstedt C. (1993) Moth pheromone genetics and evolution. Philos. Trans. R. Soc. London Ser. B: Biol. Sci, 340, 167-177.CrossRefGoogle Scholar
  34. Løken A. (1973) Studies on Scandinavian bumble bees Hymenoptera, Apidae. Norsk Entomologisk Tidsskrift 20, 1–218.Google Scholar
  35. Martinet B., Lecocq T., Smet J. and Rasmont P. (2015) A Protocol to Assess Insect Resistance to Heat Waves, Applied to Bumblebees (Bombus Latreille, 1802). PLoS ONE, 10(3), e0118591.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Martinet B., Lecocq T., Brasero N., Biella P., Urbanová K., Valterová I., Cornalba M., Gjershaug J.O., Michez D., Rasmont P. (2018) Following the Cold: Geographic Differentiation between Interglacial Refugia and Speciation in Arcto-Alpine Species Complex Bombus monticola (Hymenoptera: Apidae). Syst.Entomol. 43, 200–217.CrossRefGoogle Scholar
  37. Matoušková P., Luxová A., Matoušková J., Jiroš P., Svatoš A., Valterová I., Pichová I. (2008) A Δ9 desaturase from Bombus lucorum males: Investigation of biosynthetic pathway of marking pheromones. ChemBioChem, 9, 2534-2541.CrossRefPubMedGoogle Scholar
  38. Michener, C.D. (2007) The Bees of the World. Second Edition. Johns Hopkins University, Baltimore, 1016 pp.Google Scholar
  39. Milliron H.E., Olivier D.R. (1966) Bumblebees from Northern Ellesmere Island, with observations on usurpations by Megabombus hyperboreus (Schönherr) (Hymenoptera: Apidae). Can. Entomol. 98, 207-213.CrossRefGoogle Scholar
  40. Milliron H.E. (1973) A monograph of the western hemisphere bumblebees (Hymenoptera: Apidae; Bombinae). II. The genus Megabombus subgenus Megabombus. Mem. Ent. Soc. Can. 89, 81–237.CrossRefGoogle Scholar
  41. Mutanen M., Kivelä S.M., Vos R.A., Doorenweerd C., Ratnasingham S., Hausmann A., Huemer P., Dincă V., van Nieukerken E.J., Lopez-Vaamonde C., Vila R., Aarvik L., Decaëns T., Efetov K.A., Hebert P.D., Johnsen A., Karsholt O., Pentinsaari M., Rougerie R., Segerer A., Tarmann G., Zahiri R., Godfray HC. (2016) Species-Level Para- and Polyphyly in DNA Barcode Gene Trees: Strong Operational Bias in European Lepidoptera. Syst. Biol. 65, 1025-1040.CrossRefGoogle Scholar
  42. Oksanen J., Blanchet F.G., Friendly M., Kindt R., Legendre P., McGlinn D., Minchin P.R., O'Hara R.B., Simpson G.L., Solymos P., Stevens M.H.H., Szoecs E., Wagner H. (2017) Tertiary Vegan: Community Ecology Package. Accessed 5 Oct 2018.
  43. Paradis E., Claude J., Strimmer K. (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289–290.CrossRefGoogle Scholar
  44. Patiny S., Michez D., Rasmont P. (2009) A survey and review of the status of wild bees in the West-Palaearctic region. Apidologie, 40, 313-331.CrossRefGoogle Scholar
  45. Paterson H.E.H. (1993) Evolution and the Recognition Concept of Species. The Johns Hopkins University Press, Baltimore, Maryland.Google Scholar
  46. Pekkarinen A., Teräs I., Viramo J., Paatela J. (1981) Distribution of bumblebees (Hymenoptera, Apidae: Bombus and Psithyrus) in eastern Fennoscandia. Notulae Entomologicae 61, 71-89.Google Scholar
  47. Potapov G.S., Kondalov A.V., Spitsyn V.M., Filippov B. Yu., Kolosova Yu S., Zubrii N.A., Bolotov I.N. (2018) An integrative taxonomic approach confirms the valid status of Bombus glacialis, an endemic bumblebee species of the High Arctic. Polar Biology, 41: 629-642.CrossRefGoogle Scholar
  48. Rasmont P., Franzen M., Lecocq T., Harpke A., Roberts S.P.M., Biesmeijer K., Castro L., Cederberg B., Dvorak L., Fitzpatrick U., Gonseth Y., Haubruge E., Mahé G., Manino A., Michez D., Neumayer J., Odegaard F., Paukkunen J., Pawlikowski T., Potts S.G., Reemer M., Settele J., Straka J. and Schweiger O. (2015) Climatic risk and distribution atlas of European bumblebees. BioRisk, 10, 1–236.CrossRefGoogle Scholar
  49. R Development Core Team. (2017) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. [WWW document]. URL [accessed on 17 October 2017].
  50. Richards O.W. (1931) Some notes on the humble-bees allied to Bombus alpinus, L. Tromsø Museums Årshefter, 50, 1–32.Google Scholar
  51. Richards K.W. (1973) Biology of Bombus polaris Curtis and B. hyperboreus Schönherr at lake Hazen, northwest territories (Hymenoptera: Bombini). Quaestiones entomologicae 9, 115-57.Google Scholar
  52. Roelofs W.L., Liu W., Hao G., Jiao H., Rooney A.P., Linn Jr. C.E. (2002) Evolution of moth sex pheromones via ancestral genes. Proc. Natl. Acad. Sci. U.S.A. 99, 13621-13626.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Schlick-Steiner B.C., Steiner F.M., Seifert B., Stauffer C., Christian E., Crozier R.H. (2010) Integrative taxonomy: a multisource approach to exploring biodiversity. Annu. Rev. Entomol. 55, 421–438.CrossRefPubMedGoogle Scholar
  54. Shamurin V.F. (1966) Rol' nasekomikh-opilitelei v tundrovikh soobshchestvakh. [The role of insects in tundra communities]. Organizmi iprirodnayasreda. Voprosi geographiiGoogle Scholar
  55. Skorikov AS. (1914) Les formes nouvelles des bourdons (Hymenoptera, Bombidae). VI. Russkoe éntomologicheskoe Obozrênie 14, 119-129.Google Scholar
  56. Soltani G.G., Bénon D., Alvarez N., Praz J.C. (2017) When different contact zones tell different stories: putative ring species in the Megachile concinna species complex (Hymenoptera: Megachilidae). Biol. J. Linn. Soc. 121(4), 815-832.CrossRefGoogle Scholar
  57. Suzuki R., Shimodaira H. (2011) Pvclust: Hierarchical Clustering with P-values via Multiscale Bootstrap Resampling. Contributed package. Version 1-1.10. R Foundation for Statistical Computing, Vienna. [WWW document]. URL [accessed on 17 October 2017].
  58. Stenström M., Bergman P. (1998). Bumblebees at an alpine site in northern Sweden: temporal development, population size, and plant utilization. Ecography 21(3), 306-316.Google Scholar
  59. Svensson B.G. (1980) Species-isolating mechanisms in male bumblebees (Hymenoptera, Apidae). Acta Universitatis Upsaliensis 549, 1-42.Google Scholar
  60. Svensson B.G., Bergström G. (1979) Marking pheromones of Alpinobombus males. J. Chem. Ecol. 5, 603–615.CrossRefGoogle Scholar
  61. Svensson B.G., Appelgren M., Bergstrom G. (1984) Geranylgeranyl acetate and 2 heptadecanone as the dominant marking secretion components of the labial glands in the bumblebee Alpigenobombus wurfleini Nov. Acta Regiae Soc. Sci. 3, 145-148.Google Scholar
  62. Symonds M. R. E. and Elgar M. A. (2004) The mode of pheromone evolution: evidence from bark beetles. Proc. R. Soc. Lond. B. 271, 839-846.CrossRefGoogle Scholar
  63. Symonds M. R. E. and Elgar M. A. (2007) The evolution of pheromone diversity. Trends Ecol. Evol. 23, 220–228.CrossRefGoogle Scholar
  64. Symonds M.R.E., Moussalli A., Elagar M.A. (2009) The evolution of sex pheromones in an ecologically diverse genus of flies. Biol J Linn Soc 9, 594–603.CrossRefGoogle Scholar
  65. Taylor K., Rumsey F.J. (2003). Bartsia alpina L. J. Ecol. 91(5), 908-921.CrossRefGoogle Scholar
  66. Terzo M., Urbanova K., Valterova I., Rasmont P. (2005). Intra and interspecific variability of the cephalic labial glands’ secretions in male bumblebees: the case of Bombus (Thoracobombus) ruderarius and B. (Thoracobombus) sylvarum Hymenoptera, Apidae. Apidologie, 36, 85–96.CrossRefGoogle Scholar
  67. Trunz V., Packer L., Vieu J., Arrigo N., Praz C.J. (2016) Comprehensive phylogeny, biogeography and new classification of the diverse bee tribe Megachilini: Can we use DNA barcodes in phylogenies of large genera? Mol. Phylogenetics Evol. 103, 245-259.CrossRefGoogle Scholar
  68. Vincenti M., Guglielmetti G., Cassani G., Tonini C. (1987) Determination of Double Bond Position in Diunsaturated Compounds by Mass Spectrometry of Dimethyl Disulfide Derivatives. Anal. Chem. 59, 694-699.CrossRefGoogle Scholar
  69. Williams P.H., Cameron S.A., Hines H.M., Cederberg B., Rasmont P. (2008) A simplified subgeneric classification of the bumblebees (genus Bombus). Apidologie, 39, 46-74.CrossRefGoogle Scholar
  70. Williams P.H., Brown M.J.F., Carolan J.C., An J., Goulson D., Aytekin A.M., Best L.R., Byvaltsev A.M., Cederberg B., Dawson R., Huang J., Ito M., Monfared A., Raina R.H., Schmid-Hempel P., Sheffield C.S., Sima P., Xie Z. (2012) Unveiling cryptic species of the bumblebee subgenus Bombus s. str. worldwide with COI barcodes (Hymenoptera: Apidae). Syst. Biodivers. 10(1), 21–56.Google Scholar
  71. Williams P.H., Byvaltsev A.M., Cederberg B., Berezin M.V., Ødegaard F., Rasmussen C., Richardson L.L., Huang J., Sheffield C.S., Williams S.T. (2015) Genes suggest ancestral colour polymorphisms are shared across morphologically cryptic species in arctic bumblebees. PLoS One, 10(2), e0144544.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Williams P.H., Cannings S.G., Sheffield C.S. (2016) Cryptic subarctic diversity: a new bumblebee species from the Yukon and Alaska (Hymenoptera: Apidae). J. Nat. Hist. 50 (45-46), 2881-2893.CrossRefGoogle Scholar
  73. Wyatt T.D. (2003) Pheromones and animal behaviour: communication by smell and taste. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  74. Žacek P., Prchalova-Hornakova D., Tykva R., Kindl J., Vogel H., Svatoš A., Pichová I., Valterová I. (2013) De novo biosynthesis of sexual pheromone in the labial gland of bumblebee males. ChemBioChem, 14, 361–371.CrossRefPubMedGoogle Scholar
  75. Žáček P., Kalinová B., Šobotník J., Hovorka O., Ptácek V., Coppée A., Verheggen F.,Valterová I. (2009) Comparison of age-dependent quantitative changes in the male labial gland secretion of Bombus terrestris and Bombus lucorum. J. Chem. Ecol. 35, 698-705.Google Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Mons, Research Institute of Biosciences, Laboratory of ZoologyMonsBelgium
  2. 2.Research Unit Animal and Functionalities of Animal Products (URAFPA)University of Lorraine – INRAVandoeuvre-lès-NancyFrance
  3. 3.Department of Zoology, Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
  4. 4.Biology Centre, Institute of EntomologyCzech Academy of SciencesČeské BudějoviceCzech Republic
  5. 5.Institute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech RepublicPragueCzech Republic

Personalised recommendations