Advertisement

Apidologie

, Volume 49, Issue 6, pp 817–826 | Cite as

Impact of inundation regime on wild bee assemblages and associated bee–flower networks

  • Ulrich Neumüller
  • Bärbel Pachinger
  • Konrad Fiedler
Original article

Abstract

Wild bee assemblages on flood-prone meadows were compared with those on rarely inundated sites along the river Danube in easternmost Lower Austria. We sampled flower-visiting bees on 32 meadows from April to August 2016. Although we recorded more bee individuals on rarely inundated meadows, total bee species richness was higher on regularly flooded meadows and we observed a stronger differentiation diversity of bees among annually flooded meadows. Three network metrics derived from a bipartite plant–bee interaction matrix were unaffected by flooding regime. We conclude that extreme floods, which sporadically affect the investigated habitats, may have a devastating effect on wild bee populations, but communities quickly recover. This resilience surely depends on recolonization from the surrounding landscape, which emphasizes the need to consider community dynamics in highly variable floodplain areas not only locally, but on a landscape scale.

Keywords

wild bees community recovery species richness floodplain ecology bipartite networks 

Notes

Authors’ contribution

Ulrich Neumüller conceived the survey design, performed field sampling, and undertook the taxonomic and statistical data evaluation. Konrad Fiedler participated in developing the survey design and statistical data evaluation and contributed to writing of the manuscript. Bärbel Pachinger contributed to the identification of taxonomically challenging bee specimens and to the final manuscript version.

Funding information

We thank the University of Vienna and the Donau-Auen National Park for providing financial support for the realization this study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13592_2018_604_MOESM1_ESM.xlsx (57 kb)
ESM 1. (XLSX 57 kb)

References

  1. Amarasekare, P., Nisbet, R. M. (2001) Spatial heterogeneity, source-sink dynamics, and the local coexistence of competing species. Am. Nat. 158(6), 572–584Google Scholar
  2. Archer, M. E. (2001) The wasps and bees (Hymenoptera: Aculeata) of the river bank at Beningbrough and Keswick Fitts in Watsonian Yorkshire. Ent.s Gaz, 52, 105–115Google Scholar
  3. Baldock, K. C., Goddard, M. A., Hicks, D. M., Kunin, W. E., Mitschunas, N., et al. (2015) Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc. R. Soc. London B. 282(1803), 1–10CrossRefGoogle Scholar
  4. Banašek-Richter, C., Cattin, M. F., Bersier, L. F. (2004) Sampling effects and the robustness of quantitative and qualitative food-web descriptors. J. Theor. Biol. 226(1), 23–32CrossRefGoogle Scholar
  5. Bates, D., Maechler, M., Bolker, B., Walker, S., Christensen, R. H. B., Singmann, H., Dai, B., Grothendieck, G., Green, P. (2016) Linear Mixed-Effects Models using ‘Eigen’ and S4. Version 1.1–12 [online] https://cran.r-project.org/web/packages/lme4/lme4.pdf (accessed on 10 January 2018)
  6. Biesmeijer, J. C., Roberts, S. P., Reemer, M., Ohlemüller, R., Edwards, M., et al. (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313(5785), 351–354CrossRefGoogle Scholar
  7. Blüthgen, N., Klein, A. M. (2011) Functional complementarity and specialisation: the role of biodiversity in plant–pollinator interactions. Basic Appl. Ecol. 12(4), 282–291CrossRefGoogle Scholar
  8. Blöschl, G., Nester, T., Komma, J., Parajka, J., Perdigão, R. A. P. (2013) The June 2013 flood in the Upper Danube Basin, and comparisons with the 2002, 1954 and 1899 floods. Hydrol. Earth Syst. Sci. 17(12), 5197–5212CrossRefGoogle Scholar
  9. Buri, P., Humbert, J. Y., Arlettaz, R. (2014) Promoting pollinating insects in intensive agricultural matrices: field-scale experimental manipulation of hay-meadow mowing regimes and its effects on bees. PLoS One 9(1), e85635CrossRefPubMedGoogle Scholar
  10. Carvalho, D. M., Presley, S. J., Santos, G. M. M. (2014) Niche overlap and network specialization of flower-visiting bees in an agricultural system. Neotrop. Entomol. 43(6), 489–499CrossRefGoogle Scholar
  11. Chao, A., Ma, K. H., Hsieh, T. C. (2016) Interpolation and Extrapolation for Species Diversity version 2.0.12 [online] https://cran.r-project.org/web/packages/iNEXT/iNEXT.pdf (accessed on 10 January 2017)
  12. Cizek, O., Zamecnik, J., Tropek, R., Kocarek, P., Konvicka, M. (2012) Diversification of mowing regime increases arthropods diversity in species-poor cultural hay meadows. J. Insect Conserv. 16(2), 215–226CrossRefGoogle Scholar
  13. Demetz, A., Fiedler, K., Dreschke, T. Schulze, C.H. (2013) Natural floodplain dynamics shape grasshopper assemblages of meadows in the Donau-Auen National Park (Austria). Symposium for Research in Protected Areas (Austria) 5: 125–129Google Scholar
  14. DoRIS (2016) Jahresverlauf [online] http://www.doris.bmvit.gv.at/fahrwasserinformation/pegelstaende/jahresverlauf/ (accessed on 10 January 2017)
  15. Dormann, C. F., Fründ, J., Blüthgen, N., Gruber, B. (2009) Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol. J. 2, 7–24CrossRefGoogle Scholar
  16. Dormann, C. F., Fründ, J., Gruber, B. (2016) Package ‘bipartite’. Visualising Bipartite Networks and Calculating Some (Ecological) Indices version 2.07 [online] https://cran.r-project.org/web/packages/bipartite/bipartite.pdf (accessed on 10 January 2017)
  17. Fellendorf, M., Mohra, C., Paxton, R. J. (2004) Devasting effects of river flooding to the ground-nesting bee, Andrena vaga (Hymenoptera: Andrenidae), and its associated fauna. J. Insect Conserv. 8(4), 311–312CrossRefGoogle Scholar
  18. Fies, R., Rabl, D., Schulze, C. H., Fiedler, K. (2016) Summer floods shape meadow butterfly communities in a floodplain nature reserve in Central Europe. J. Insect Conserv. 20(3), 433–445CrossRefGoogle Scholar
  19. Fischer, M. A., Oswald, K., Adler, W., Gottschlich, G., Englmaier, P., et al. (2008) Exkursionsflora für Österreich, Liechtenstein und Südtirol. OÖ. Landesmuseen, LinzGoogle Scholar
  20. Fründ, J., McCann, K. S., Williams, N. M. (2015) Sampling bias is a challenge for quantifying specialization and network structure: lessons from a quantitative niche model. Oikos 125, 502–13CrossRefGoogle Scholar
  21. Gerisch, M., Dziock, F., Schanowski, A., Ilg, C., Henle, K. (2012) Community resilience following extreme disturbances: The response of ground beetles to a severe summer flood in a Central European lowland stream. River Res. Appl. 28(1), 81–92CrossRefGoogle Scholar
  22. Gusenleitner, F., Schwarz, M., Mazzucco, K. (2012) Checkliste der Fauna Österreichs, No. 6. Biosystematics and Ecology-Series No. 29. Verlag der Österreichischen Akademie der Wissenschaften, Vienna, pp. 1–129Google Scholar
  23. Holzschuh, A., Steffan-Dewenter, I., Kleijn, D., Tscharntke, T. (2007) Diversity of flower-visiting bees in cereal fields: effects of farming system, landscape composition and regional context. J. Appl. Ecol 44(1), 41–49CrossRefGoogle Scholar
  24. Holzschuh, A., Dormann, C. F., Tscharntke, T., Steffan-Dewenter, I. (2013) Mass-flowering crops enhance wild bee abundance. Oecologia 172(2), 477–484CrossRefGoogle Scholar
  25. Hupp, C. R. (1983) Vegetation pattern on channel features in the Passage Creek Gorge, Virginia. Castanea 62–72Google Scholar
  26. Jones, J. P. (2011) Monitoring species abundance and distribution at the landscape scale. J. Appl. Ecol. 48(1), 9–13CrossRefGoogle Scholar
  27. Johnson, R. A. (1986) Intraspecific resource partitioning in the bumble bees Bombus ternarius and B. pennsylvanicus. Ecology 67(1), 133–138CrossRefGoogle Scholar
  28. Klasz, G., Reckendorfer, W., Baumgartner, C., Gabriel, H., Gutknecht, D. (2013) River-bed degradation and overbank deposition: A human induced geomorphic disequilibrium in the Donau-Auen National Park. Symposium for Research in Protected Areas (Austria) 5, 379–384Google Scholar
  29. Land Niederösterreich (2017) Wasserstandsnachrichten, Hochwasserprognosen in Niederösterreich [online] http://www.noel.gv.at/Externeseiten/wasserstand/static/stations/207241/station.html (accessed on 10 January 2017)
  30. Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M., et al. (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7(7), 601–613CrossRefGoogle Scholar
  31. Lepori, F., Malmqvist, B. (2009) Deterministic control on community assembly peaks at intermediate levels of disturbance. Oikos 118(3), 471–479CrossRefGoogle Scholar
  32. Loeffel K., Streich S., Westrich P., Zettel J. (1999) Auensukzession und Zonation im Rottensand (Pfynwald, Kt. VS). II. Wiederbesiedlung einer Überschwemmungsfläche durch Wildbienen (Hymenoptera, Apidae). Mitt. schweiz. ent. Ges. 71, 139–151Google Scholar
  33. Nagelkerke, N. J. (1991) A note on a general definition of the coefficient of determination. Biometrika, 78(3), 691–692CrossRefGoogle Scholar
  34. Nakagawa, S., Schielzeth, H. (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4(2), 133–142CrossRefGoogle Scholar
  35. Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., et al. (2017) The vegan package. Community ecology package. Version 2.4–2 [online] https://cran.r-project.org/web/packages/vegan/vegan.pdf (accessed on 10 January 2018)
  36. Pollock, M. M., Naiman, R. J., Hanley, T. A. (1998) Plant species richness in riparian wetlands — a test of biodiversity theory. Ecology 79(1), 94–105Google Scholar
  37. Popic, T. J., Wardle, G. M., Davila, Y. C. (2013) Flower-visitor networks only partially predict the function of pollen transport by bees. Austral Ecol. 38(1), 76–86CrossRefGoogle Scholar
  38. Potts, S. G., Vulliamy, B., Dafni, A., Ne’eman, G., Willmer, P. (2003) Linking bees and flowers: how do floral communities structure pollinator communities? Ecology 84(10), 2628–2642CrossRefGoogle Scholar
  39. Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., Kunin, W. E. (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25(6), 345–353CrossRefGoogle Scholar
  40. Power, E., Stout, J. C. (2011) Organic dairy farming: impacts on insect flower interaction networks and pollination. J. Appl. Ecol. 48, 561–569CrossRefGoogle Scholar
  41. R Development Core Team (2015) R: A language and environment for statistical computing, http://www.R-project.org. R Foundation for Statistical Computing, Vienna
  42. Ranta, E., Lundberg, H. (1980) Resource partitioning in bumblebees: the significance of differences in proboscis length. Oikos 35(3), 298–302CrossRefGoogle Scholar
  43. Roubik, D. W. (1992) Ecology and natural history of tropical bees. Cambridge University Press., Cambridge, pp. 194–195Google Scholar
  44. RStudio Team (2016) R Studio: Integrated Development for R. https://www.rstudio.com/products/rstudio/. RStudio Inc., Boston
  45. Scheuchl, E., Willner, W. (2016) Taschenlexikon der Wildbienen Mitteleuropas. Quelle & Meyer Verlag, Wiebelsheim, pp. 545–547Google Scholar
  46. Tews, J., Brose, U., Grimm, V., Tielbörger, K., Wichmann, M. C., Schwager, M., Jeltsch, F. (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J. Biogeogr. 31(1), 79–92CrossRefGoogle Scholar
  47. Tiedeken, E. J., Stout, J. C. (2015) Insect-flower interaction network structure is resilient to a temporary pulse of floral resources from invasive Rhododendron ponticum. PLoS One 10(3), 0119733CrossRefGoogle Scholar
  48. Tilman, D. (2004) Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proc. Natl. Acad. Sci. U.S.A. 101(30), 10,854–10,861CrossRefGoogle Scholar
  49. Truxa, C., Fiedler, K. (2012) Down in the flood? How moth communities are shaped in temperate floodplain forests. Insect Conserv. Divers. 5(5), 389–397CrossRefGoogle Scholar
  50. Van Looy, K., Honnay, O., Bossuyt, B., Hermy, M. (2003) The effects of river embankment and forest fragmentation on the plant species richness and composition of floodplain forests in the Meuse valley, Belgium. Belg. J. Bot. 136(2), 97–108Google Scholar
  51. Vivian-Smith, G. (1997) Microtopographic heterogeneity and floristic diversity in experimental wetland communities. J. Ecol. 85(1), 71–82CrossRefGoogle Scholar
  52. Ward, J. V., Tockner, K., Schiemer, F. (1999) Biodiversity of floodplain river ecosystems: ecotones and connectivity. Regulated Rivers: Research & Management, 15(1), 125–139CrossRefGoogle Scholar
  53. Zotarelli, H. G. S., Evans, D. M., Bego, L. R., Sofia, S. H. (2014) A comparison of social bee–plant networks between two urban areas. Neotrop. Entomol. 43(5), 399–408CrossRefGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Tropical Ecology and Animal BiodiversityUniversity of ViennaViennaAustria
  2. 2.Institute of Evolutionary Ecology and Conservation GenomicsUniversity of UlmUlmGermany
  3. 3.Institute for Integrative Nature Conservation ResearchUniversity of Natural Resources and Life Sciences Vienna (BOKU)ViennaAustria

Personalised recommendations