Advertisement

Apidologie

, Volume 49, Issue 6, pp 789–802 | Cite as

Complementarity and redundancy in the functional niche of cider apple pollinators

  • Marcos Miñarro
  • Daniel García
Original article

Abstract

The magnitude and the stability of pollination services in entomophilous crops both depend not only on honeybee management but also on the diversity of wild pollinators, which enables additive contributions and replacement of species. This work evaluated the functional niche of cider apple pollinators in Spain and found a highly heterogeneous community of pollinators in taxonomic and functional terms. Through different niche dimensions, our results suggest complementarity (i.e. niche differentiation) in the contribution of the various groups to pollination, through differences in abundance, foraging behaviour, diet and daytime and canopy distribution patterns, as well as redundancy (i.e. niche similarity) in their responses to environmental conditions. Thus, quantitative and qualitative complementarity would promote an additive effect of different insects on pollination, while similarity in environmental response would provide insurance against potential honeybee loss.

Keywords

crop pollination environmental response foraging behaviour Malus domestica spatio-temporal patterns 

Notes

Acknowledgements

We thank R. Martínez-Sastre, A. Núñez, C. Guardado, D. Luna, K. Twizell and A. Somoano for technical support; R. Lendrum for linguistic advice; Campoastur S. Coop. Asturiana for orchard selection; the orchard owners for providing access to their properties; and L.O. Aguado, P. Alvarez and J. Ortiz for taxonomic support. Funding was provided by grants INIA-RTA2013-00139-C03-01 (Ministerio de Economía, Industria y Competitividad (MinECo) and Fondo Europeo de Desarrollo Regional) to MM and PCIN2014-145-C02-02 (MinECo; EcoFruit project BiodivERsA-FACCE2014-74) and CGL2015-68963-C2-2-R (MinECo/FEDER) to DG.

Author contribution

MM and DG conceived and designed the research, collected field data, analysed the data and wrote the manuscript, which both authors have approved.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no potential conflict of interest.

Supplementary material

13592_2018_600_MOESM1_ESM.docx (79 kb)
ESM 1. (DOCX 79 kb)

References

  1. Aizen, M. A., Harder, L. D. (2009) The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr. Biol. 19 (11), 915–918.CrossRefPubMedGoogle Scholar
  2. Bartomeus, I., Park, M. G., Gibbs, J., Danforth, B. N., Lakso, A. N., Winfree, R. (2013) Biodiversity ensures plant–pollinator phenological synchrony against climate change. Ecol. Lett. 16 (11), 1331–1338.CrossRefPubMedGoogle Scholar
  3. Bishop, J. A., Armbruster, W. S. (1999) Thermoregulatory abilities of Alaskan bees: effects of size, phylogeny and ecology. Funct. Ecol. 13 (5), 711–724.CrossRefGoogle Scholar
  4. Blitzer, E. J., Gibbs, J., Park, M. G., Danforth, B. N. (2016) Pollination services for apple are dependent on diverse wild bee communities. Agric. Ecosyst. Environ. 221, 1–7.CrossRefGoogle Scholar
  5. Blüthgen, N., Klein, A.M. (2011) Functional complementarity and specialisation: the role of biodiversity in plant–pollinator interactions. Basic Appl. Ecol. 12 (4):282–291.CrossRefGoogle Scholar
  6. Brittain, C., Kremen, C., Klein, A. M. (2013a) Biodiversity buffers pollination from changes in environmental conditions. Glob. Change Biol. 19 (2), 540–547.CrossRefGoogle Scholar
  7. Brittain, C., Williams, N., Kremen, C., Klein, A. M. (2013b) Synergistic effects of non-Apis bees and honey bees for pollination services. Proc. Roy. Soc. B 280(1754), 20122767.Google Scholar
  8. Campbell, A. J., Wilby, A., Sutton, P., Wäckers, F. L. (2017) Do sown flower strips boost wild pollinator abundance and pollination services in a spring-flowering crop? A case study from UK cider apple orchards. Agric. Ecosyst. Environ. 239, 20–29.CrossRefGoogle Scholar
  9. Dicks, L.V., Viana, B., Bommarco, R., Brosi, B., del Coro Arizmendi, M. et al. (2016) Ten policies for pollinators. Science 354 (6315), 975–976.CrossRefPubMedGoogle Scholar
  10. FAO (2018) Food and Agriculture Organization of the United Nations, http://www.fao.org/faostat/en/#data/QC (Accessed 24 February 2018).
  11. Földesi, R., Kovács-Hostyánszki, A., Kőrösi, Á., Somay, L., Elek, Z. et al. (2016) Relationships between wild bees, hoverflies and pollination success in apple orchards with different landscape contexts. Agric. Forest Entomol. 18 (1), 68–75.CrossRefGoogle Scholar
  12. García, D., Miñarro, M., Martínez-Sastre, R. (2018) Birds as suppliers of pest control in cider apple orchards: Avian biodiversity drivers and insectivory effect. Agric. Ecosyst. Environ. 254, 233–243.CrossRefGoogle Scholar
  13. Garibaldi, L.A., Steffan-Dewenter, I., Winfree, R., Aizen, M.A., Bommarco, R. et al. (2013) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339 (6127), 1608–1611.CrossRefPubMedGoogle Scholar
  14. Garibaldi, L.A., Bartomeus, I., Bommarco, R., Klein, A.M., Cunningham, S.A. et al. (2015) Trait matching of flower visitors and crops predicts fruit set better than trait diversity. J. Appl. Ecol. 52 (6),1436–1444.CrossRefGoogle Scholar
  15. Garratt, M. P. D., Breeze, T. D., Jenner, N., Polce, C., Biesmeijer, J. C., Potts, S. G. (2014) Avoiding a bad apple: Insect pollination enhances fruit quality and economic value. Agric. Ecosyst. Environ. 184, 34–40.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Garratt, M. P. D., Breeze, T. D., Boreux, V., Fountain, M. T., McKerchar, M. et al. (2016) Apple pollination: demand depends on variety and supply depends on pollinator identity. PloS one 11 (5), e0153889.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Geldmann, J., González-Varo, J.P. (2018) Conserving honey bees does not help wildlife. Science 359 (6374), 392–393.CrossRefPubMedGoogle Scholar
  18. Geslin, B., Aizen, M. A., Garcia, N., Pereira, A. J., Vaissière, B. E., Garibaldi, L. A. (2017) The impact of honey bee colony quality on crop yield and farmers’ profit in apples and pears. Agric. Ecosyst. Environ. 248, 153–161CrossRefGoogle Scholar
  19. Gibbs, J., Joshi, N. K., Wilson, J. K., Rothwell, N. L., Powers, K. et al. (2017) Does passive sampling accurately reflect the bee (Apoidea: Anthophila) communities pollinating apple and sour cherry orchards?. Environ. Entomol. 46 (3), 579–588.CrossRefPubMedGoogle Scholar
  20. Goulson, D., Nicholls, E., Botías, C., Rotheray, E.L. (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347(6229), 1255957.CrossRefPubMedGoogle Scholar
  21. Grab, H., Blitzer, E. J., Danforth, B., Loeb, G., Poveda, K. (2017) Temporally dependent pollinator competition and facilitation with mass flowering crops affects yield in co-blooming crops. Sci. Rep. 7, 45296.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Grass, I., Meyer, S., Taylor, P. J., Foord, S. H., Hajek, P., Tscharntke, T. (2018) Pollination limitation despite managed honeybees in South African macadamia orchards. Agric. Ecosyst. Environ. 260, 11–18.CrossRefGoogle Scholar
  23. Haslett, J.R. (1989) Adult feeding by holometabolous insects: pollen and nectar as complementary nutrient sources for Rhingia campestris (Diptera: Syrphidae). Oecologia 81, 361–363.CrossRefPubMedGoogle Scholar
  24. Herrera, C. M. (1990) Daily patterns of pollinator activity, differential pollinating effectiveness, and floral resource availability, in a summer-flowering Mediterranean shrub. Oikos 58, 277–288.CrossRefGoogle Scholar
  25. Joshi, N. K., Otieno, M., Rajotte, E. G., Fleischer, S. J., Biddinger, D. J. (2016) Proximity to woodland and landscape structure drives pollinator visitation in apple orchard ecosystem. Front. Ecol. Evol. 4, 38.CrossRefGoogle Scholar
  26. Klein, A.M., Vaissiere, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C., Tscharntke, T. (2007) Importance of pollinators in changing landscapes for world crops. Proc. Roy. Soc. B 274 (1608), 303–313.CrossRefGoogle Scholar
  27. Martins, K. T., Gonzalez, A., Lechowicz, M. J. (2015) Pollination services are mediated by bee functional diversity and landscape context. Agric. Ecosyst. Environ. 200, 12–20.CrossRefGoogle Scholar
  28. Miñarro, M., García, D. (2016) Manzana, kiwi y arándano: sin insectos no hay frutos ni beneficios. Tecnología Agroalimentaria 18, 4–8.Google Scholar
  29. Miñarro, M., Prida, E. (2013) Hedgerows surrounding organic apple orchards in north-west Spain: potential to conserve beneficial insects. Agric. Forest Entomol. 15, 382–390.CrossRefGoogle Scholar
  30. Miñarro, M., Dapena, E., Blázquez, M.D. (2011) Guía ilustrada de las enfermedades, las plagas y la fauna beneficiosa del cultivo del manzano. Ed. SERIDA. Asturias.Google Scholar
  31. Owen, J., Gilbert, F. S. (1989) On the abundance of hoverflies (Syrphidae). Oikos 55, 183–193.CrossRefGoogle Scholar
  32. Park, M. G., Raguso, R. A., Losey, J. E., & Danforth, B. N. (2016). Per-visit pollinator performance and regional importance of wild Bombus and Andrena (Melandrena) compared to the managed honey bee in New York apple orchards. Apidologie 47 (2), 145–160.CrossRefGoogle Scholar
  33. Perry, J. N., Dixon, P.M. (2002) A new method to measure spatial association for ecological count data. Ecoscience 9, 133–141.CrossRefGoogle Scholar
  34. Perry, J. N., Leibhold, A. M., Rosenberg, M. S., Miriti, M., Jakomulska, A., and Citron-Pousty, S. (2002) Illustrations and guidelines for selecting statistical methods for quantifying spatial pattern in ecological data. Ecography 25, 578–600.CrossRefGoogle Scholar
  35. Potts, S.G., Biesmeijer, J.C., Kremen, C., Neumann, P., Schweiger, O., Kunin, W.E. (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25 (6), 345–353.CrossRefPubMedGoogle Scholar
  36. Rader, R., Reilly, J., Bartomeus, I., Winfree, R. (2013) Native bees buffer the negative impact of climate warming on honey bee pollination of watermelon crops. Glob. Change Biol. 19, 3103–3110.CrossRefGoogle Scholar
  37. Rader, R., Bartomeus, I., Garibaldi, L. A., Garratt, M. P., Howlett, B. G. et al. (2016) Non-bee insects are important contributors to global crop pollination. PNAS 113 (1), 146–151.CrossRefPubMedGoogle Scholar
  38. Ramírez, F., Davenport, T. L. (2013) Apple pollination: A review. Sci. Hort. 162, 188–203.CrossRefGoogle Scholar
  39. Russo, L., Park, M. G., Blitzer, E. J., Danforth, B. N. (2017) Flower handling behavior and abundance determine the relative contribution of pollinators to seed set in apple orchards. Agric. Ecosyst. Environ. 246, 102–108.CrossRefGoogle Scholar
  40. Sapir, G., Baras, Z., Azmon, G., Goldway, M., Shafir, S. et al. (2017) Synergistic effects between bumblebees and honey bees in apple orchards increase cross pollination, seed number and fruit size. Sci. Hort. 219, 107–117.CrossRefGoogle Scholar
  41. Thomson, J.D., Goodell, K. (2001) Pollen removal and deposition by honeybee and bumblebee visitors to apple and almond flowers. J. Appl. Ecol. 38, 1032–1044.CrossRefGoogle Scholar
  42. vanEngelsdorp, D., Evans, J. D., Saegerman, C., Mullin, C., Haubruge, E. et al. (2009) Colony collapse disorder: a descriptive study. PloS one 4 (8), e6481.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Vaudo, A.D., Tooker, J.F., Grozinger, C.M., Patch, H.M. (2015) Bee nutrition and floral resource restoration. Curr. Opin. Insect Sci. 10, 133–141.CrossRefPubMedGoogle Scholar
  44. Vicens, N., Bosch, J. (2000a) Pollinating efficacy of Osmia cornuta and Apis mellifera (Hymenoptera: Megachilidae, Apidae) on ‘Red Delicious’ apple. Environ. Entomol. 29, 235–240.CrossRefGoogle Scholar
  45. Vicens, N., Bosch, J. (2000b) Weather-dependent pollinator activity in an apple orchard, with special reference to Osmia cornuta and Apis mellifera (Hymenoptera: Megachilidae and Apidae). Environ. Entomol. 29, 413–420.CrossRefGoogle Scholar
  46. Winfree, R. (2013) Global change, biodiversity, and ecosystem services: What can we learn from studies of pollination? Basic Appl. Ecol. 14 (6), 453–460.CrossRefGoogle Scholar
  47. Winfree, R., Kremen, C. (2009) Are ecosystem services stabilized by differences among species? A test using crop pollination. Proc. Roy. Soc. B 276 (1655), 229–237.CrossRefGoogle Scholar
  48. Winfree, R., W Fox, J., Williams, N. M., Reilly, J. R., Cariveau, D. P. (2015) Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18 (7), 626–635.CrossRefPubMedGoogle Scholar
  49. Winfree, R., Reilly, J. R., Bartomeus, I., Cariveau, D. P., Williams, N. M., Gibbs, J. (2018). Species turnover promotes the importance of bee diversity for crop pollination at regional scales. Science 359(6377), 791–793.CrossRefPubMedGoogle Scholar

Copyright information

© INRA, DIB and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA)VillaviciosaSpain
  2. 2.Departamento de Biología de Organismos y SistemasUniversidad de Oviedo, y Unidad Mixta de Investigación en Biodiversidad (CSIC-Uo-PA)OviedoSpain

Personalised recommendations