Advertisement

Molecular cytogenetics and its application to major flowering ornamental crops

  • Yoon-Jung Hwang
  • Raisa Aone Cabahug
  • Franklin Hinosa Mancia
  • Ki-Byung LimEmail author
Review Article
  • 58 Downloads

Abstract

Cytogenetic research can provide valuable information regarding breeding, genetics, bioinformatics, genomics, and the taxonomy of plants. Every year, new varieties of flowering ornamental crops are being produced all over the world. In order to perform efficient breeding, chromosome studies are first conducted. The data obtained from these studies lead to a systematic and less costly crossbreeding. Various techniques, such as FISH (Fluorescent in situ Hybridization) and GISH (Genomic in situ Hybridization), have been used for cytogenetic studies. These methods are used for the identification of ploidy level, construction of an accurate karyotype, and evaluation of hybridity in ornamental crops. Major flowering ornamental crops are economically important for use as cut flowers or as potted plants all over the world and are highly valuable in cytogenetic research. In this article, we have summarized basic theories and principles employed in molecular cytogenetics, including its history in floriculture, and its application to the breeding of major flowering ornamental crops, such as lily, rose, orchid, and chrysanthemum. In addition, the key results of chromosome studies on the aforementioned flowering ornamental plants are also discussed.

Keywords

Chromosome Chrysanthemum Cytogenetics FISH GISH In situ hybridization 

Notes

Acknowledgements

This work was carried out with the support of the “Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ012804)” Rural Development Administration, Republic of Korea.

Authors contribution

Conceptualization: Hwang, YJ; Cabahug, RAM; Lim, KB Design Methodology: Hwang, YJ; Cabahug, RAM Literature Collection: Hwang YJ; Cabahug, RAM, Mancia, FH Chapter Writing: Hwang, YJ; Cabahug, RAM; Lim, KB; Mancia, FH Editing: Hwang, YJ; Cabahug, RAM; Lim, KB.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest in the submission of this paper to this journal.

References

  1. Abd El-Twab MH, Kondo K (2003) Physical mapping of 45S rDNA loci by fluorescent in situ hybridization and Evolution among polyploid Dendranthema species. Chrom Sci 7:71–76Google Scholar
  2. Abd El-Twab MH, Kondo K (2004) Identification of parental chromosomes and changes of artificial intergeneric F1 hybrid between Dendrathena horaimontana and Nipponanthemum nipponicum by fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH). Chrom Sci 8:71–79Google Scholar
  3. Abd El-Twab MH, Kondo K (2006a) FISH physical mapping of 5S, 45S and Arabidopsis-type telomere sequence repeats in Chrysanthemum zawadskii showing intra-chromosomal variation and complexity in nature. Chrom Bot 1:1–5CrossRefGoogle Scholar
  4. Abd El-Twab MH, Kondo K (2006b) Fluorescence in situ hybridization and genomic in situ hybridization to identify the parental genomes in the intergeneric hybrid between Chrysanthemum japonicum and Nipponanthemum nipponicum. Chrom Bot 1:7–11CrossRefGoogle Scholar
  5. Abd El-Twab MH, Kondo K (2006c) Physical mapping of 45S rDNA loci by fluorescent in situ hybridization and evolution among polyploid Dendranthema species. Chrom Sci 7:71–76Google Scholar
  6. Abd El-Twab MH, Kondo K (2007) Rapid genome reshuffling induced by allopolyploidy in F1 hybrid in Chrysanthemum remotipinum (formerly Ajaniaremotipinna) and Chrysanthemum chanetii (formerly Dendranthema chanetii). Chrom Bot 2:1–9CrossRefGoogle Scholar
  7. Abd El-Twab MH, Kondo K (2008) Visualization of genomic relationships in allotetraploid hybrids between Chrysanthemum lavandulifolium × Ch. chanetii by fluorescence in situ hybridization and genomic in situ hybridization. Chrom Bot 3:19–25CrossRefGoogle Scholar
  8. Ahn YJ, Hwang YJ, Younis A, Sung MS, Ramzan F, Kwon MJ, Kim CK, Lim KB (2017) Investigation of karyotypic composition and evolution in Lilium species belonging to the section Martagon. Plant Biotechnol Rep 11:407–416CrossRefGoogle Scholar
  9. Akasaka M, Ueda Y, Koba T (2003) Karyotype analysis of wild rose species belonging to septets b, c, and d by molecular cytogenetic method. Breeding Sci 53:177–182CrossRefGoogle Scholar
  10. Albini SM (1994) A karyotype of the Arabidopsis thaliana genome derived from synaptonemal complex analysis at prophase I of meiosis. Plant J 5:665–672CrossRefGoogle Scholar
  11. Amsellem L, Noyer JL, Le Bourgeois T, Hossaert-McKey M (2000) Comparison of genetic diversity of the invasive weed Rubus alceifolius poir. (Rosaceae) in its native range and in areas of introduction, using amplified fragment length polymorphism (AFLP) markers. Mol Ecol 9:443–455CrossRefPubMedPubMedCentralGoogle Scholar
  12. Anamthawat-Jónsson K (2003) Preparation of chromosomes from plant leaf meristems for karyotype analysis and in situ hybridization. Methods Cell Sci 25:91–95CrossRefPubMedPubMedCentralGoogle Scholar
  13. Barba-Gonzalez R, Lokker AC, Lim KB, Ramanna MS, Van Tuyl JM (2004) Use of 2n gametes for the production of sexual polyploids from sterile Oriental × Asiatic hybrids of lilies (Lilium). Theor Appl Genet 109:1125–1132CrossRefPubMedPubMedCentralGoogle Scholar
  14. Barba-Gonzalez R, Ramanna MS, Visser RG, Van Tuyl JM (2005a) Occurrence of 2n gametes in the F1 hybrids of Oriental × Asiatic lilies (Lilium): relevance to intergenomic recombination and backcrossing. Euphytica 143:67–73CrossRefGoogle Scholar
  15. Barba-Gonzalez R, Ramanna MS, Visser RG, Van Tuyl JM (2005b) Intergenomic recombination in F1 lily hybrids (Lilium) and its significance for genetic variation in the BC1 progenies as revealed by GISH and FISH. Genome 48:884–894CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bass HW, Birchler JA (eds) (2012) Plant cytogenetics, plant genetics, and genomics: crops and models 4. Springer, New YorkGoogle Scholar
  17. Beal JM (1942) Chromosome fragments in Lilium willmottiae and hybrids between it and L. davidii. Bot Gaz 103:617–619CrossRefGoogle Scholar
  18. Begum R, Alam SS (2005) Karyotype analysis of seven orchid species from Bangladesh. Bangladesh K Bot 34:31–36Google Scholar
  19. Belling J (1921) On counting chromosomes in pollen mother cells. Am Nat 55:573–574CrossRefGoogle Scholar
  20. Benavente E, Cifuentes M, Dusautoir JC, David J (2008) The use of cytogenetic tools for studies in the crop-to-wild gene transfer scenario. Cytogenet Genome Res 120:384–395CrossRefPubMedPubMedCentralGoogle Scholar
  21. Bennett AB (2010) A plant breeder’s history of the world. Science 329:391–392CrossRefGoogle Scholar
  22. Bianco P, D’Emerico S, Medagli P, Ruggiero L (1999) Polyploidy and aneuploidy in Ophrys, Orchis, and Anacamptis (Orchidaceae). Plant Cell Evol 178:235–245Google Scholar
  23. Birchler JA (2013) Aneuploidy in plants and flies: the origin of studies of genomic imbalance. Semin Cell Dev Biol 24:315–319CrossRefPubMedPubMedCentralGoogle Scholar
  24. Bonos SA, Plumley KA, Meyer WA (2002) Ploidy determination in Agrostis using flow cytometry and morphological traits. Crop Sci 42:192–196PubMedPubMedCentralGoogle Scholar
  25. Burton TL, Husband BC (2001) Fecundity and offspring ploidy in matings among diploid, triploid and tetraploid Chamerion angustifolium (Onagraceae): consequences for tetraploid establishment. Heredity 87:573–582CrossRefPubMedPubMedCentralGoogle Scholar
  26. Chambers AH, Pollard H, Folta KM (2013) Limitations of morphological ploidy estimation methods in Fragaria. J Berry Res 3:135–149Google Scholar
  27. Clarindo WR, Carvalho CR (2006) A high quality chromosome preparation from cell suspension aggregates culture of Coffea canephora. Cytologia 71:243–249CrossRefGoogle Scholar
  28. Cohen SN, Chang ACY, Boyer HW, Helling RH (1973) Construction of biologically functional bacterial plasmids in vitro. PNAS 70:3240–3244CrossRefPubMedPubMedCentralGoogle Scholar
  29. Cuyacot AR, Won SY, Park SK, Sohn SH, Lee JH, Kim JS, Kim HH, Lim KB, Hwang YJ (2016) The chromosomal distribution of repetitive DNA sequences in Chrysanthemum boreale revealed a characterization in its genome. Sci Hortic 198:438–444CrossRefGoogle Scholar
  30. D’Emerico S, Galasso I, Pignone D, Scrugli A (2001) Localization of rDNA loci by fluorescent in situ hybridization in some wild orchids from Italy (Orchidaceae). Caryologia 54:31–36CrossRefGoogle Scholar
  31. Darlington DC, La Cour LF (1969) The handling of chromosomes, 5th edn. Allen & Unwin, LondonGoogle Scholar
  32. Darlington CD, Wylie AP (1955) Chromosome atlas of flowering plants. Allen & Unwin, LondonGoogle Scholar
  33. Daviña JR, Grabiele M, Cerutti JC, Hojsgaard DH, Almada RD, Insaurralde IS, Honfi AI (2009) Chromosome studies in Orchidaceae from Argentina. Genet Mol Biol 32:811–821CrossRefPubMedPubMedCentralGoogle Scholar
  34. Devi J, Ko JM, Seo BB (2005) FISH and GISH cytogenetic techniques. Indian J Biotechnol 4:307–315Google Scholar
  35. Ding XL, Xu TL, Wang J, Luo L, Yu C, Dong GM, Pan HT, Zhang QX (2016) Distribution of 45S rDNA in modern rose cultivars (Rosa hybrida), Rosa rugosa, and their interspecific hybrids revealed by fluorescence in situ Hybridization. Cytogenet Genome Res 149:226–235CrossRefGoogle Scholar
  36. Dolezel J, Bartos J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95:99–110CrossRefPubMedPubMedCentralGoogle Scholar
  37. Doyle G (1986) Aneuploidy and inbreeding depression in random mating and self-fertilization autotetraploid populations. Theor Appl Genet 72:799–806CrossRefGoogle Scholar
  38. Dutrillaux AM, Lemonnier-Darcemont M, Darcemont C, Krpac V, Fouchet P, Dutrillaux B (2009) Origin of the complex karyotype of the polyploid parthenogenetic grasshopper Saga pedo (Orthoptera: Tettigoniidae). Eur J Entomol 106:477–483CrossRefGoogle Scholar
  39. Ekong NJ, Akpan GA, Udo IJ (2014) Comparative effects of colchicine, 8-hydroxyquinoline and paradichlorobenzene on arm ratio of mitotic chromosomes of Allium cepa L. Int J Med Plant Altern Med 2:21–26Google Scholar
  40. Figueroa DM, Bass HW (2010) A historical and modern perspective on plant cytogenetics. Brief Funct Genomics 9:95–102CrossRefGoogle Scholar
  41. Fribourg HA, Hannaway DB, West CP (2009) Accomplishments and challenges. Chapter 29 chromosome number: the implications of cytogenetics. Agron Monogr 53:511–515Google Scholar
  42. Galbraith DW (2004) Cytometry and plant sciences: a personal retrospective. Cytometry A 58:37–44CrossRefGoogle Scholar
  43. Gall JG, Pardue ML (1969) Formation and detection of RNA–DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci 63:378–383CrossRefGoogle Scholar
  44. Goff SA, Rickle D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Verma H et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100CrossRefGoogle Scholar
  45. Griffiths AJ, Miller JH, Suzuki DT, Lewontin RC (eds) (2000) Genetics and the organism: an introduction. Freeman WH, New YorkGoogle Scholar
  46. Gupta PK (2006) A re-birth in twenty-first century. Indian J Crop Sci 1:1–7Google Scholar
  47. Harrison CJ, Alvey E, Henderson IR (2010) Meiosis in flowering plants and other green organisms. J Exp Bot 61:2863–2875CrossRefGoogle Scholar
  48. Hartati S, Nandariyah Yanus A, Djoar DW (2017) Short communication: cytological studies on black orchid hybrid (Coelogyne pandurata Lindley). Biodiversitas 18:555–559CrossRefGoogle Scholar
  49. Henry IM, Dilkes BP, Young K, Watson B, Wu H, Comai L (2005) Aneuploidy and genetic variation in the Arabidopsis haliana triploid response. Genetics 170:1979–1988CrossRefPubMedPubMedCentralGoogle Scholar
  50. Henry IM, Dilkes BP, Comai L (2006) Molecular karyotyping and aneuploidy detection in Arabidopsis thaliana using quantitative fluorescent polymerase chain reaction. Plant J 48:307–319CrossRefGoogle Scholar
  51. Hiremath SC, Chinnappa CC (2015) Plant chromosome preparation and staining for light microscopic studies. Springer, ChamCrossRefGoogle Scholar
  52. Hwang YJ, Lim KB (2011) Development of microdissection and chromosome specific genomic library in Lilium tigrinum. Genes Genomics 33:451–455CrossRefGoogle Scholar
  53. Hwang YJ, Song CM, Kwon MK, Kim ST, Kim WH, Han YY, Han TH, Lim KB (2010) An increment of crossing efficiency with consideration of pollen viability analysis in rose. Flower Res J 18:193–200Google Scholar
  54. Hwang YJ, Kim HH, Kim JB, Lim KB (2011) Karyotype analysis of Lilium tigrinum by FISH. Hortic Environ Biotechnol 52:292–297CrossRefGoogle Scholar
  55. Hwang YJ, Yunis A, Ryu KB, Lim KB, Eun CH, Lee J, Sohn SH, Kwon SJ (2013) Karyomorphological analysis of wild Chrysanthemum boreale collected from four natural habitats in Korea. Flower Res J 21:182–189CrossRefGoogle Scholar
  56. Islam SM (2010) The effect of colchicine pretreatment on isolated microspore culture of wheat (Triticum aestivum L.). Aust J Crop Sci 4:660–665Google Scholar
  57. Jian HY, Zhang H, Tang KX, Li SF, Wang QG, Qiu XO, Yan HJ (2010) Decaploidy in Rosa praelucens Byhouwer (Rosaceae) endemic to Zhongdian Plateau, Yunnan, China. Caryologia 63:162–167CrossRefGoogle Scholar
  58. Jian HY, Min T, Ting Z, Li SB, Zhang H, Tang KX (2013) Chromosome variation from sect. Chinenses (Rosa L.) through Chinese old garden rose to modern rose cultivars. Acta Hortic 997:157–166CrossRefGoogle Scholar
  59. Kannan TP, Alwi ZB (2009) Cytogenetics: past, present, and future. Malays J Med Sci 16:4–9PubMedPubMedCentralGoogle Scholar
  60. Karp A (1994) Preparation of chromosome spreads by root-tip meristem dissection for in situ hybridization with biotin-labeled probes. In: Isaac PG (ed) Protocols for nucleic acid by nonradioactive probes, vol 28. Humana Press Inc, Totowa, pp 149–151CrossRefGoogle Scholar
  61. Khan N, Barba-Gonzalez R, Ramanna MS, Visser RG, Van Tuyl JM (2009) Construction of chromosomal recombination maps of three genomes of lilies (Lilium) based on GISH analysis. Genome 52:238–251CrossRefGoogle Scholar
  62. Khorana HG, Büuchi H, Ghosh H, Gupta N, Jacob TM, Kössel H, Morgan R, Narang SA, Ohtsuka E et al (1966) Polynucleotide synthesis and the genetic code. Cold Spring Harb Symp Quant Biol 31:39–49CrossRefGoogle Scholar
  63. Kiihl PRP, Pereira ARA, Godoy SM, Stenzel NMC, Risso-Pascotto C (2011) Chromosome stickiness during meiotic behavior analysis of Passiflora serrato-diditata L. (Passifloraceae). Cienc Rural 41:1018–1023CrossRefGoogle Scholar
  64. Kilian B, Graner A (2012) NGS technologies for analyzing germplasm diversity in genebanks. Brief Funct Genomics 11:38–50CrossRefPubMedPubMedCentralGoogle Scholar
  65. Kirov IV, Laere KV, Roy ND, Khrustaleva LI (2016) Towards a FISH-based karyotype of Rosa L. (Rosaceae). Comp Cytogenet 10:543–554CrossRefPubMedPubMedCentralGoogle Scholar
  66. Lee YI, Chang FC, Chung MC (2011) Chromosome pairing affinities in interspecific hybrids reflect phylogenetic distances among lady’s slipper orchids (Paphiopedilum). Ann Bot 108:113–121CrossRefPubMedPubMedCentralGoogle Scholar
  67. Leitch IJ, Bennett MD (1997) Polyploidy in angiosperms. Trends Plant Sci 2:470–476CrossRefGoogle Scholar
  68. Liang G, Chen H (2015) Scaling chromosomes for an evolutionary karyotype: a chromosomal tradeoff between size and number across woody species. PLoS ONE 10:e0144669CrossRefPubMedPubMedCentralGoogle Scholar
  69. Lim KB, Chung JD, Van Kronenburg BCE, Ramanna MS, De Jong JH, Van Tuyl JM (2000) Introgression of Lilium rubellum Baker chromosomes into L. longiflorum Thunb.: a genome painting study of the F1 hybrid, BC1 and BC2 progenies. Chrom Res 8:119–125CrossRefGoogle Scholar
  70. Lim KB, Wennekes J, De Jong JH, Jacobsen E, van Tuyl JM (2001) Karyotype analysis of Lilium longiflorum and Lilium rubelum by chromosome banding and fluorescence in situ hybridization. Genome 44:911–918CrossRefGoogle Scholar
  71. Lim KB, Ramana MS, Jacobsen E, van Tuyl JM (2003) Evaluation of BC2 progenies derived from 3x-2x and 3x-4x crosses of Lilium hybrids: a GISH analysis. Theor Appl Genet 106:568–574CrossRefGoogle Scholar
  72. Ma YP, Yu ZY, Wei JX, Dai SL (2015) Characterization of ploidy levels in Chrysanthemum L. by flow cytometry. J For Res 26:1–5CrossRefGoogle Scholar
  73. Malik CP, Thomas PT (1966) Karyotypic studies in some Lolium and Festuca species. Caryologia 119:167–196CrossRefGoogle Scholar
  74. Marasek A, Haseterok R, Orlikowska T (2004a) The use of chromosomal markers linked with nucleoli organizers for F1 hybrid verification in Lilium. Acta Hortic 651:77–82CrossRefGoogle Scholar
  75. Marasek A, Haseterok R, Wiejacha K, Orlikowska T (2004b) Determination by GISH and FISH of hybrid status in Lilium. Hereditas 140:1–7CrossRefGoogle Scholar
  76. McClintock B (1929) Chromosome morphology in Zea mays. Science 69:629CrossRefGoogle Scholar
  77. McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801CrossRefGoogle Scholar
  78. Mehra PN, Kashyap SK (1986) Cytological studies in some West Himalayan orchids, tribe Neottiteae, III subtribe sporanthinae. Caryologia 39:151–160CrossRefGoogle Scholar
  79. Miller M, Zhang C, Chen ZJ (2012) Ploidy and hybridity effects on growth vigor and gene expression in Arabidopsis thaliana hybrids and their parents. G3 (Bethesda) 2:505–513CrossRefGoogle Scholar
  80. O’Connor C (2008) Fluorescence in situ hybridization (FISH). Nat Educ 1:171Google Scholar
  81. O’Mara JG (1939) Observations on the immediate effect of colchicine. J Hered 30:35–37Google Scholar
  82. Osalou AR, Rouyandezagh SD, Alizadeh B, Er C, Sevimay CS (2013) A comparison of ice cold water pretreatment and α-bromonaphthalene cytogenetic method for identification of Papaver species. Sci World J 608650:6Google Scholar
  83. Research Institute for Agriculture, Fisheries and Food (RILVO) (2017) Ploidy analysis [Internet]. https://www.ilvo.vlaanderen.be/language/nl-BE/EN/Services-and-Products/Lab-Analyses/Plant-Soil-and-Substrates/Ploidy-Analysis
  84. Roberts AV, Gladis T, Brumme H (2009) DNA amounts of roses (Rosa L.) and their use in attributing ploidy levels. Plant Cell Rep 28:61–71CrossRefPubMedPubMedCentralGoogle Scholar
  85. Roux N, Toloza A, Radecki Z, Zapata-Arias FJ, Dolezel J (2003) Rapid detection of aneuploidy in Musa using flow cytometry. Plant Cell Rep 2:483–490CrossRefGoogle Scholar
  86. Rudkin GT, Stollar BD (1977) High resolution of DNA–RNA hybrids in situ by indirect immunofluorescence. Nature 265:472–474CrossRefPubMedPubMedCentralGoogle Scholar
  87. Sakamura T (1918) Kurze Mitteilung uber die Chromosomenzah1en und die Vcrwandtschtsverhaltnisseder Triticum (brief information on chromosome numbers and conditions of Triticum). Artem Bot Mag 32:151–154Google Scholar
  88. Samadi N, Ghaffari SM, Akhani H (2013) Meiotic behavior, karyotype analyses and pollen viability in species of Tamarix (Tamaricaceae). Willdenowia 43:195–203CrossRefGoogle Scholar
  89. Sanger F, Coulson A (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94:441–448CrossRefPubMedPubMedCentralGoogle Scholar
  90. Satter MC, Carvalho CR, Clarindo WR (2015) The polyploidy and its key role in plant breeding. Planta 243:281–296CrossRefGoogle Scholar
  91. Schwarzarcher T, Leitch AR (1994) Enzymatic treatment of plant material to spread chromosomes for in situ hybridization. Methods Mol Biol 28:153–160Google Scholar
  92. Schwarzarcher T, Ambros P, Schweizer D (1980) Application of giemsa banding to orchid karyotype analysis. Plant Syst Evol 134:293–297CrossRefGoogle Scholar
  93. Scott RJ, Spielman M, Dickinson HG (2004) Stamen structure and function. Plant Cell 16:46–60CrossRefGoogle Scholar
  94. Sharma AK (1956) Fixation of plant chromosomes. Bot View 12:665–695Google Scholar
  95. Sharma AK, Mookerjea MA (1954) Paradichlorobenzene and other chemicals in chromosome work. Stain Technol 30:1–7CrossRefGoogle Scholar
  96. Sharma SK, Kumaria S, Tandon P, Satyawada RR (2012) Comaprative karyomorphological study of some Indian Cymbidium Swartz, 1799 (Cymbidieae, Orchidaceae). Comp Cytogenet 6:453–465CrossRefPubMedPubMedCentralGoogle Scholar
  97. Shindo K, Kamemoto H (1963) Karyotype analysis of some Sarcanthine orchids. Am J Bot 50:73–79CrossRefGoogle Scholar
  98. Silva GS, Souza MM (2013) Genomic in situ hybridization in plants. Genet Mol Res 12:2953–2965CrossRefPubMedPubMedCentralGoogle Scholar
  99. Silva GM, Varella TL, Karsburg IV, Santana TN, Carvalho F, Anez RB, Rossi AA, Silva ML (2017) Cytogenetic characterization of species and hybrids or orchids of Cattleya genus. Cytologia 82:137–140CrossRefGoogle Scholar
  100. Silva GS, Souza MM, de Melo CAF, Urdampilleta JD, Forni-Martins ER (2018) Identification and characterization of karyotype in Passiflora hybrids using FISH and GISH. BMC Genet 19:26CrossRefPubMedPubMedCentralGoogle Scholar
  101. Singh R (2003) Plant cytogenetics, 2nd edn. CRC Press, Washington DCGoogle Scholar
  102. Sinha S, Karmakar K, Devani RS, Banerjee J, Sinha RK, Banerjee AK (2016) Preparation of mitotic and meiotic metaphase chromosomes from young leaves and flower buds of Coccinia grandis. Bio-protocol 6:e1771Google Scholar
  103. Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, Depamphilis CW, Wall PK et al (2009) Polyploidy and angiosperm diversification. Am J Bot 96:336–348CrossRefPubMedPubMedCentralGoogle Scholar
  104. Speicher MR, Carter NP (2005) The new cytogenetics: blurring the boundaries with molecular biology. Nat Rev Genet 6:782–792CrossRefPubMedPubMedCentralGoogle Scholar
  105. Stewart RN (1943) The occurrence of aneuploids in Lilium. Bot Gaz 104:620–626CrossRefGoogle Scholar
  106. Sumner AT (2003) Chromosomes: organization and function. Blackwell Publishing, OxfordGoogle Scholar
  107. Tang F, Wang H, Chen S, Chen F, Liu Z, Fang W (2011) Intergeneric hybridization between Dendranthema nankingense and Tanacetum vulgare. Sci Hortic 132:1–6CrossRefGoogle Scholar
  108. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  109. Tlaskal J (1979) Combined cycloheximide and 8-hydroxyquinoline pretreatment for study of plant chromosomes. Stain Technol 54:313–319CrossRefPubMedPubMedCentralGoogle Scholar
  110. Trask BJ (2002) Human cytogenetics: 46 chromosomes, 46 years and counting. Nat Rev Genet 3:769–778CrossRefGoogle Scholar
  111. Waminal NE, Pellerin RJ, Kim NS, Jayakodi M, Park JY, Yang TJ, Kim HH (2018) Rapid and efficient FISH using pre-labeled oligomer probes. Sci Rep 8:8224CrossRefPubMedPubMedCentralGoogle Scholar
  112. Wang Y, Bigelow CA, Jiang YW (2009) Ploidy level and DNA content of perennial ryegrass germplasm as determined by flow cytometry. HortScience 44:2049–2052CrossRefGoogle Scholar
  113. Wang Q, Wang J, Zhang Y, Zhang Y, Xu S, Lu Y (2015) The application of fluorescence in situ hybridization in different ploidy level cross-breeding of lily. PLoS ONE 10:e0126899CrossRefPubMedPubMedCentralGoogle Scholar
  114. White MJD (1954) Animal cytology and evolution. Cambridge University Press, CambridgeGoogle Scholar
  115. Woodhouse M, Burkart-Waco D, Comai L (2009) Polyploidy. Nat Educ 2:1–5Google Scholar
  116. Wu JH, Ferguson AR, Murray BG, Jia Y, Datson PM, Zhang J (2012) Induced polyploidy dramatically increases the size and alters the shape of fruit in Actinidia chinensis. Ann Bot 109:169–179CrossRefGoogle Scholar
  117. Xia Y, Deng X, Xhou P, Shima K, Silva JA (2006) The world floriculture industry: dynamics of production and markets. Floric Ornam Plant Biotechnol 4:336–347Google Scholar
  118. Xu H, Zhang W, Zhan T, Li J, Wu X, Dong L (2014) Determination of ploidy level and isolation of genes encoding acetyl-CoA carboxylase in Japanese foxtail (Alopecurus japonicus). PLoS ONE 9:1–12Google Scholar
  119. Younis A, Ramzan F, Hwang YJ, Lim KB (2015) FISH and GISH: molecular cytogenetic tools and their applications in ornamental plants. Plant Cell Rep 34:1477–1488CrossRefGoogle Scholar
  120. Yu C, Luo L, Pan H, Sui Y, Guo R, Wang J, Zhang Q (2014) Karyotype analysis of wild Rosa species in Xinjiang, Northwestern China. J Am Soc Hortic Sci 139:39–47CrossRefGoogle Scholar
  121. Zhang Y, Zhu ML, Dai SL (2013) Analysis of karyotype diversity of 40 Chinese Chrysanthemum cultivars. J Syst Evol 51:335–352CrossRefGoogle Scholar
  122. Zhou RN, Hu ZM (2007) The development of chromosome microdissection and microcloning technique and its applications in genomic research. Curr Genomics 8:67–72CrossRefPubMedPubMedCentralGoogle Scholar
  123. Zhou S, Ramanna MS, Visser RGF, Van Tuyl JM (2008) Genome composition of triploid lily cultivars derived from sexual polyploidization of Longiflorum x Asiatic hybrid (Lilium). Euphytica 160:207–215CrossRefGoogle Scholar

Copyright information

© Korean Society for Horticultural Science 2019

Authors and Affiliations

  1. 1.Department of Chemistry Life ScienceSahmyook UniversitySeoulRepublic of Korea
  2. 2.Chromosome Research Institute, Sahmyook UniversitySeoulRepublic of Korea
  3. 3.Department of Environmental HorticultureSahmyook UniversitySeoulRepublic of Korea
  4. 4.Department of Horticultural ScienceKyungpook National UniversityDaeguRepublic of Korea

Personalised recommendations