Advertisement

Construction of genetic linkage map for Ficus carica L. based on AFLP, SSR, and SRAP markers

  • Hatice IktenEmail author
  • Selcan Sevinc Solak
  • Osman Gulsen
  • Nedim Mutlu
  • Cengiz Ikten
Research Report
  • 12 Downloads

Abstract

A new genetic linkage map of Ficus carica (2n = 2x = 26) was constructed using 149 F1 progeny derived from the cross between two fig cultivars, ‘Bursa Siyahı’ (BS) and ‘Ak Ilek’ (AK). Fifty-two amplified fragment length polymorphism, 49 simple sequence repeat (SSR), 16 sequence-related amplified polymorphism (SRAP), and 12 sequence characterized amplified region (SCAR–SRAP) combinations were used to generate markers for the map. The BS map consisted of 229 markers, distributed to 16 linkage groups (LGs), with an average marker density of 5.98 cM and map distance of 1342 cM. The AK linkage map carried 244 markers, distributed to 16 LGs, with an average marker density of 4.90 cM and map distance of 1191 cM. The consensus map comprises 355 markers, 1474 cM in length, with average marker density of 4.15 cM. The map indicates the location of new SSRs, nine of which were transferred from related species, and might be helpful for mapping quantitative trait loci that control important horticultural traits in the future.

Keywords

Fig Molecular markers F1 pseudo-test cross Consensus map ‘Bursa Siyahı’ ‘Ak Ilek’ 

Notes

Acknowledgements

We greatly thank and acknowledge to Scientific and Technological Research Council of Turkey (TUBITAK) for financial support of this study (Project No: TUBITAK-TOVAG-110O659), to Erbeyli Fig Research Institute-Aydin for their contribution and Akdeniz University for laboratory infrastructure and facilities. We also thank to Hilmi Kocatas for F1 progeny plants and Inci Sahin for technical help.

Author contributions

HI, CI, OG, NM, designed the research; HI, SSC performed the research; HI, CI analyzed the data; HI wrote the manuscript; and CI, OG and NM edit the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13580_2019_162_MOESM1_ESM.docx (513 kb)
Supplementary material 1 (DOCX 515 kb)

References

  1. Ahmed S, Dawson DA, Compton SG, Gilmartin PM (2007) Characterization of microsatellite loci in the African fig Ficus sycomorus L. (Moraceae). Mol Ecol Notes.  https://doi.org/10.1111/j.1471-8286.2007.01822.x Google Scholar
  2. Balas FC, Osuna MD, Domínguez G, Pérez-Gragera F, López-Corrales M (2014) Ex situ conservation of underutilised fruit tree species: establishment of a core collection for Ficus carica L. using microsatellite markers (SSRs). Tree Genet Genomes.  https://doi.org/10.1007/s11295-014-0715-3 Google Scholar
  3. Bandelj D, Javornik B, Jakse J (2007) Development of microsatellite markers in the common fig, Ficus carica L. Mol Ecol Notes.  https://doi.org/10.1111/j.1471-8286.2007.01866.x Google Scholar
  4. Blenda AV, Verde I, Georgi LL, Reighard GL, Forrest SD, Muñoz-Torres M, Baird WV, Abbott AG (2007) Construction of a genetic linkage map and identification of molecular markers in peach rootstocks for response to peach tree short life syndrome. Tree Genet Genomes 3:341–350.  https://doi.org/10.1007/s11295-006-0074-9 CrossRefGoogle Scholar
  5. Cao K, Wang L, Zhu G, Fang W, Chen C, Zhao P (2011) Construction of a linkage map and identification of resistance gene analog markers for root-knot nematodes in wild peach, Prunus kansuensis. J Am Soc Hortic Sci 136:190–197CrossRefGoogle Scholar
  6. Celton JM, Tustin DS, Chagné D, Gardiner SE (2009) Construction of a dense genetic linkage map for apple rootstocks using SSRs developed from Malus ESTs and Pyrus genomic sequences. Tree Genet Genomes.  https://doi.org/10.1007/s11295-008-0171-z Google Scholar
  7. Chang Y, Kim HB, Oh E-U, Yi K, Song KJ (2018) Construction of genetic linkage maps of ‘Fina Sodea’ clementine (Citrus clementina) and Byungkyul (C. platymamma), a Korean landrace, based on RAPD and SSR markers. Hortic Environ Biotechnol.  https://doi.org/10.1007/s13580-018-0021-3 Google Scholar
  8. Crozier YC, Jia XC, Yao JY, Field AR, Cook JM, Crozier RH (2007) Microsatellite primers for Ficus racemosa and Ficus rubiginosa. Mol Ecol Notes.  https://doi.org/10.1111/j.1471-8286.2006.01523.x Google Scholar
  9. De Candolle A (1886) Origin of cultivated plants (reprint of 2nd edition, 1967). Hafner Publishing, New YorkGoogle Scholar
  10. Di Pierro EA, Gianfranceschi L, Di Guardo M, Koehorst-Van Putten HJ, Kruisselbrink JW, Longhi S, Troggio M, Bianco L, Muranty H, Pagliarani G et al (2016) A high-density, multi-parental SNP genetic map on apple validates a new mapping approach for outcrossing species. Hortic Res.  https://doi.org/10.1038/hortres.2016.57 Google Scholar
  11. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:115Google Scholar
  12. FAOSTAT (2012) Food and Agriculture Organization of the United Nation Statistics for 2012. http://www.fao.org/faostat/en/#rankings/countries_by_commodity. Accessed 14 Nov 2018
  13. Fisher PJ, Gardner RC, Richardson TE (1996) Single locus microsatellites isolated using 5′ anchored PCR. Nucleic Acids Res.  https://doi.org/10.1093/nar/24.21.4369 Google Scholar
  14. Giraldo E, Viruel MA, López-Corrales M, Hormaza JI (2005) Characterisation and cross-species transferability of microsatellites in the common fig (Ficus carica L.). J Hortic Sci Biotechnol.  https://doi.org/10.1080/14620316.2005.11511920 Google Scholar
  15. Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137Google Scholar
  16. Hemmat M, Weeden NF, Brown SK (2003) Mapping and evaluation of Malus × domestica microsatellites in apple and pear. J Am Soc Hortic Sci 128:515–520CrossRefGoogle Scholar
  17. Hurtado MA, Romero C, Vilanova S, Abbott AG, Llácer G, Badenes ML (2002) Genetic linkage maps of two apricot cultivars (Prunus armeniaca L.), and mapping of PPV (sharka) resistance. Theor Appl Genet 105:182–191.  https://doi.org/10.1007/s00122-002-0936-y CrossRefGoogle Scholar
  18. Ikten H, Mutlu N, Gulsen O, Kocatas H, Aksoy U (2010) Elucidating genetic relationships, diversity and population structure among the Turkish female figs. Genetica.  https://doi.org/10.1007/s10709-009-9400-0 Google Scholar
  19. Kenis K, Keulemans J (2005) Genetic linkage maps of two apple cultivars (Malus × domestica Borkh.) based on AFLP and microsatellite markers. Mol Breed.  https://doi.org/10.1007/s11032-004-5592-2 Google Scholar
  20. Khadari B, Hochu I, Santoni S, Kjellberg F (2001) Identification and characterization of microsatellite loci in the common fig (Ficus carica L.) and representative species of the genus Ficus. Mol Ecol Notes.  https://doi.org/10.1046/j.1471-8278.2001.00072.x Google Scholar
  21. Khadari B, El Aabidine AZ, Grout C, Ben Sadok I, Doligez A, Moutier N, Santoni S, Costes E (2010) A genetic linkage map of olive based on amplified fragment length polymorphism, intersimple sequence repeat and simple sequence repeat markers. J Am Soc Hortic Sci 135:548–555CrossRefGoogle Scholar
  22. Kislev ME, Hartmann A, Bar-Yosef O (2006) Early domesticated fig in the Jordan Valley. Science.  https://doi.org/10.1126/science.1125910 Google Scholar
  23. Lambert P, Hagen LS, Arus P, Audergon JM (2004) Genetic linkage maps of two apricot cultivars (Prunus armeniaca L.) compared with the almond Texas × peach Earlygold reference map for Prunus. Theor Appl Genet 108:1120–1130.  https://doi.org/10.1007/s00122-003-1526-3 CrossRefGoogle Scholar
  24. Liebhard R, Koller B, Gianfranceschi L, Gessler C (2003) Creating a saturated reference map for the apple (Malus × domestica Borkh.) genome. Theor Appl Genet.  https://doi.org/10.1007/s00122-003-1209-0 Google Scholar
  25. Lu Z-X, Sosinski B, Reighard GL, Baird WV, Abbott AG (1998) Construction of a genetic linkage map and identification of AFLP markers for resistance to root-knot nematodes in peach rootstocks. Genome.  https://doi.org/10.1139/gen-41-2-199 Google Scholar
  26. Maliepaard C, Alston FH, Van Arkel G, Brown LM, Chevreau E, Dunemann F, Evans KM, Gardiner S, Guilford P, Van Heusden AW et al (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor Appl Genet.  https://doi.org/10.1007/s001220050867 Google Scholar
  27. Mori K, Shirasawa K, Nogata H, Hirata C, Tashiro K, Habu T, Kim S, Himeno S, Kuhara S, Ikegami H (2017) Identification of RAN1 orthologue associated with sex determination through whole genome sequencing analysis in fig (Ficus carica L.). Sci Rep 7:1–12.  https://doi.org/10.1038/srep41124 CrossRefGoogle Scholar
  28. Olmstead JW, Sebolt AM, Cabrera A, Sooriyapathirana SS, Hammar S, Iriarte G, Wang D, Chen CY, Van Der Knaap E, Iezzoni AF (2008) Construction of an intra-specific sweet cherry (Prunus avium L.) genetic linkage map and synteny analysis with the Prunus reference map. Tree Genet Genomes.  https://doi.org/10.1007/s11295-008-0161-1 Google Scholar
  29. Parrish TL (2003) in Krakatau: genetic consequences of island colonization, Chapter 5. Identification of a male-specific AFLP marker in a functionally dioecious fig Ficus fulva Reinw. Ex. Bl. (Moraceae). Universiteit Utrecht, Netherland, PhD Diss.Google Scholar
  30. Parrish TL, Koelewijn HP, Van Dijk PJ (2004) Identification of a male-specific AFLP marker in a functionally dioecious fig, Ficus fulva Reinw. ex Bl. (Moraceae). Sex Plant Reprod 17:17–22.  https://doi.org/10.1007/s00497-004-0208-x CrossRefGoogle Scholar
  31. Paun O, Schönswetter P (2012) Amplified fragment length polymorphism: an invaluable fingerprinting technique for genomic, transcriptomic, and epigenetic studies. Methods Mol Biol.  https://doi.org/10.1007/978-1-61779-609-8_7 Google Scholar
  32. Schouten HJ, van de Weg WE, Carling J, Khan SA, McKay SJ, van Kaauwen MPW, Wittenberg AHJ, Koehorst-van Putten HJJ, Noordijk Y, Gao Z et al (2012) Diversity arrays technology (DArT) markers in apple for genetic linkage maps. Mol Breed 29:645–660.  https://doi.org/10.1007/s11032-011-9579-5 CrossRefGoogle Scholar
  33. Semagn K, Bjørnstad Å, Ndjiondjop MN (2006) Principles, requirements and prospects of genetic mapping in plants. Afr J Biotechnol.  https://doi.org/10.5897/AJB2006.000-5112 Google Scholar
  34. Storey WB (1975) Figs. In: Janick J, Moore JN (eds) Advances in fruit breeding. Purdue Univ. Press, West Lafayette, pp 568–589Google Scholar
  35. Van Ooijen JW (2006) Software for the calculation of genetic linkage map in experimental population. Kyazma BV, Wageningen.  https://doi.org/10.1101/gad.232082.113 Google Scholar
  36. Van Ooijen JW (2011) Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genet Res (Camb).  https://doi.org/10.1017/S0016672311000279 Google Scholar
  37. Venkateswarlu M, Urs SR, Nath BS, Shashidhar HE, Maheswaran M, Veeraiah TM, Sabitha MG (2006) A first genetic linkage map of mulberry (Morus spp.) using RAPD, ISSR, and SSR markers and pseudotestcross mapping strategy. Tree Genet Genomes 3:15–24.  https://doi.org/10.1007/s11295-006-0048-y CrossRefGoogle Scholar
  38. Vignes H, Hossaert-Mckey M, Beaune D, Fevre D, Anstett MC, Borges RM, Kjellberg F, Chevallier MH (2006) Development and characterization of microsatellite markers for a monoecious Ficus species, Ficus insipida, and cross-species amplification among different sections of Ficus. Mol Ecol Notes.  https://doi.org/10.1111/j.1471-8286.2006.01347.x Google Scholar
  39. Vos P, Hogers R, Bleeker M, Reijans M, Van De Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res.  https://doi.org/10.1093/nar/23.21.4407 Google Scholar
  40. Yamamoto T, Kimura T, Terakami S, Nishitani C, Sawamura Y, Saito T, Kotobuki K, Hayashi T (2007) Integrated reference genetic linkage maps of pear based on SSR and AFLP markers. Breed Sci.  https://doi.org/10.1270/jsbbs.57.321 Google Scholar
  41. Zavodna M, Arens P, Van Dijk PJ, Vosman B (2005) Development and characterization of microsatellite markers for two dioecious Ficus species. Mol Ecol Notes.  https://doi.org/10.1111/j.1471-8286.2005.00924.x Google Scholar

Copyright information

© Korean Society for Horticultural Science 2019

Authors and Affiliations

  1. 1.Department of Agricultural Biotechnology, Faculty of AgricultureAkdeniz UniversityAntalyaTurkey
  2. 2.Department of Horticulture, Faculty of AgricultureErciyes UniversityKayseriTurkey
  3. 3.Department of Plant Protection, Faculty of AgricultureAkdeniz UniversityAntalyaTurkey

Personalised recommendations