Advertisement

Tools for Chrysanthemum genetic research and breeding: Is genotyping-by-sequencing (GBS) the best approach?

  • Toan Khac Nguyen
  • Jin-Hee LimEmail author
Review Article
  • 24 Downloads

Abstract

Chrysanthemum, which belongs to the Asteraceae family, is a floriculture crop with ornamental, industrial, and medicinal value. Chrysanthemum breeding programs have generated genetic linkage maps and identified molecular markers for important traits. Chrysanthemum species have a complex genetic background, and several studies on Chrysanthemum species have been published in the last 3 decades. The Chrysanthemum genome was published by Amway Botanical R&D Center, China (online since 2017/12/07); however, the molecular breeding of Asteraceae is not well studied yet. Next-generation sequencing (NGS) technologies, genotyping-by-sequencing (GBS), and association mapping have facilitated the identification of novel genetic markers. Chrysanthemum species have a very large genome and include diploid and polyploid species (such as allohexaploids) with complex hereditary features such as self-incompatibility systems and inbreeding depression. The development of NGS technologies allowed the advance of high-throughput DNA sequencing for detecting and single nucleotide polymorphisms (SNP) in various plant species. Through NGS, a large number of SNPs detected via whole-genome sequencing can be used as markers in breeding and genetic studies. While SNP markers allow rapid analyses, contribute to the low cost of genome-wide scans, and are sequenced by numerous efficient platforms in diverse genetic backgrounds, GBS can be advantageous for the study of gene function, genetic variation, and heredity, specifically in modern plant breeding. In addition, GBS can reduce genome complexity, allowing SNP discovery and genotyping of sequences without a reference genome. This review focuses on the tools used for genomic research and breeding in Chrysanthemum, and discusses the processes in SNP development and study of the evolutionary processes in Chrysanthemum species.

Keywords

Chrysanthemum Chrysanthemum genome GBS Genetic diversity NGS SNP 

Notes

Acknowledgements

We thank the members of our lab, especially S. T. T. Ha, for her assistance during manuscript revision.

Author contributions

T.K. Nguyen designed the study and wrote the manuscript. J.H. Lim contributed to the writing of the manuscript and supervised the project.

Funding

This study was funded by the “Development of global-market strategic-type new cultivars in Chrysanthemum (PJ0117502018)” of the Rural Development Administration of Korea (RDA), South Korea.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Altshuler D, Pollara VJ, Cowles CR, van Etten WJ, Baldwin J, Linton L, Lander ES (2000) An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature 407:513–516.  https://doi.org/10.1038/35035083 CrossRefGoogle Scholar
  2. An CS, Kim SC, Go SL (1996) Analysis of red pepper (Capsicum annuum) genome. J Plant Biol 39:57–61Google Scholar
  3. Anderson NO (2006) Chrysanthemum, Chrysanthemum × grandiflora Tzvelv. Flower Breed Genet 14:389–437.  https://doi.org/10.1007/978-1-4020-4428-1-14 Google Scholar
  4. Anderson NO, Ascher PD (2000) Fertility changes in inbred families of self-incompatible chrysanthemums (Dendranthema grandiflorum). J Am Soc Hortic Sci 125:619–625CrossRefGoogle Scholar
  5. Andolfatto P, Davison D, Erezyilmaz D (2011) Multiplex shotgun genotyping for rapid and efficient genetic mapping. Genome Res 21:610–617.  https://doi.org/10.1101/gr.115402.110 CrossRefGoogle Scholar
  6. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3:e3376.  https://doi.org/10.1371/journal.pone.0003376 CrossRefGoogle Scholar
  7. Baker M (2012) De novo genome assembly: what every biologist should know. Nat Methods 9:334–337.  https://doi.org/10.1038/nmeth.1935 Google Scholar
  8. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59.  https://doi.org/10.1038/nature07517 CrossRefGoogle Scholar
  9. Bevan M, Walsh S (2005) The Arabidopsis genome: a foundation for plant research. Genome Res 15:1632–1642.  https://doi.org/10.1101/gr.3723405 CrossRefGoogle Scholar
  10. Chen JY, Wang SQ, Wang XC, Wang PW (1995) Thirty years’ studies on breeding ground-cover chrysanthemum new cultivars. Acta Hortic 404:30–36Google Scholar
  11. Chong X, Zhang F, Wu Y, Yang X, Zhao N, Wang H, Guan Z, Fang W, Chen F (2016) A SNP-Enable assessment of genetic diversity, evolutionary relationships and the identification of candidate genes in chrysanthemum. Genome Biol Evol 8:3661–3671.  https://doi.org/10.1093/gbe/evw270 Google Scholar
  12. Chung YS, Choi SC, Jun T-H, Kim C (2017) Genotyping-by-sequencing: a promising tool for plant genetics research and breeding. Hortic Environ Biotechnol 58:425–431.  https://doi.org/10.1007/s13580-017-0297-8 CrossRefGoogle Scholar
  13. Cuyacot AR, Won SY, Park SK, Sohn S-H, Lee J, Kim JS, Kim HH, Lim K-B, Hwang Y-J (2015) The chromosomal distribution of repetitive DNA sequences in Chrysanthemum boreale revealed a characterization in its genome. Sci Hortic 198:438–444.  https://doi.org/10.1016/j.scienta.2015.12.025 CrossRefGoogle Scholar
  14. Dai SL, Wang WK, Huang JP (2002) Advance of researches on phylogeny of Dendranthema and origin of Chrysanthemum. J Beijing For Univ 24:230–234.  https://doi.org/10.13332/j.1000-1522.2002.z1.046 Google Scholar
  15. Dong W, Wu D, Li G, Wu D, Wang Z (2018) Next generation sequencing from bulked segregant analysis identifies a dwarfism gene in watermelon. Sci Rep 8:2908.  https://doi.org/10.1038/s41598-018-21293-1 CrossRefGoogle Scholar
  16. Dowrick GJ (1953) Chromosomes of Chrysanthemum. II. Garden varieties. Heredity 7:59–72.  https://doi.org/10.1038/hdy.1953.5 CrossRefGoogle Scholar
  17. Dowrick GJ, El-Bayoumi A (1966) The origin of new forms of the garden Chrysanthemum. Euphytica 15:32–38CrossRefGoogle Scholar
  18. Egan AN, Schlueter J, Spooner DM (2012) Applications of next-generation sequencing in plant biology. Am J Bot 99:175–185.  https://doi.org/10.3732/ajb.1200020 CrossRefGoogle Scholar
  19. Ekblom R, Galindo J (2011) Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 107:1–15.  https://doi.org/10.1038/hdy.2010.152 CrossRefGoogle Scholar
  20. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A Robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379.  https://doi.org/10.1371/journal.pone.0019379 CrossRefGoogle Scholar
  21. Feng S, He R, Lu J, Jiang M, Shen X, Jiang Y, Wang Z, Wang H (2016) Development of SSR markers and assessment of genetic diversity in medicinal Chrysanthemum morifolium cultivars. Cultivars Front Genet 7:113.  https://doi.org/10.3389/fgene.2016.00113 Google Scholar
  22. Flicek P, Aken BL, Beal K (2008) Ensembl 2008. Nucleic Acids Res 36:D707–D714.  https://doi.org/10.1093/nar/gkm988 CrossRefGoogle Scholar
  23. Fu YB, Cheng B, Peterson GW (2014) Genetic diversity analysis of yellow mustard (Sinapis alba L.) germplasm based on genotyping by sequencing. Genet Resour Crop Evol 61:579–594.  https://doi.org/10.1007/s10722-013-0058-1 CrossRefGoogle Scholar
  24. Gore MA, Chia J-M, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J (2009) A first-generation haplotype map of maize. Science 326:1115–1117.  https://doi.org/10.1126/science.1177837 CrossRefGoogle Scholar
  25. Gupta RC, Bala S, Sharma S, Kapoor M (2013) Cytomorphological studies in some species of Chrysanthemum L. (Asteraceae). Chromosome Bot 8:69–74.  https://doi.org/10.3199/iscb.8.69 CrossRefGoogle Scholar
  26. Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T, Dong G, Sang T, Han B (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076.  https://doi.org/10.1101/gr.089516.108 CrossRefGoogle Scholar
  27. Hwang Y-J, Younis A, Ryu KB, Lim KB, Eun C-H, Lee J, Sohn S-H, Kwon S-J (2013) Karyomorphological analysis of wild Chrysanthemum boreale collected from four natural habitats in Korea. Flower Res J 21:182–189.  https://doi.org/10.11623/frj.2013.21.4.34 CrossRefGoogle Scholar
  28. Iwatsuki K, Takasi Y, David EB, Hideaki O (1997) Flora of Japan, 3b, Angiospermae-Dicotyledoneae: Sympetalae (b). Kodansha, TokyoGoogle Scholar
  29. Jo K-M, Jo Y, Chu H, Lian S, Cho WK (2015) Development of EST-derived SSR markers using next-generation sequencing to reveal the genetic diversity of 50 chrysanthemum cultivars. Biochem Syst Ecol 60:37–45.  https://doi.org/10.1016/j.bse.2015.03.002 CrossRefGoogle Scholar
  30. Kameswari PL, Girwani A (2017) A comparative analysis of genetic diversity in Chrysanthemum (Dendranthema grandiflora Tzvelec) cultivars based on RAPD and ISSR markers. Int J Curr Microbiol App Sci 6:2134–2143.  https://doi.org/10.20546/ijcmas.2017.603.244 Google Scholar
  31. Khaing AA, Moe KT, Hong WJ, Park CS, Yeon KH, Park HS, Kim DC, Choi BJ, Jung JY, Chae SC, Lee KM (2013) Phylogenetic relationships of chrysanthemums in Korea based on novel SSR markers. Genet Mol Res 12:5335–5347.  https://doi.org/10.4238/2013.November.7.8 CrossRefGoogle Scholar
  32. Kim JS, Pak J-H, Seo B-B, Tobe H (2003) Karyotypes of metaphase chromosomes in diploid populations of Dendranthema zawadskii and related species (Asteraceae) from Korea: diversity and evolutionary implications. J Plant Res 116:47–55.  https://doi.org/10.1007/s10265-002-0067-1 Google Scholar
  33. Kim JS, Oginuma K, Tobe H (2008) Analysis of meiotic chromosome behaviour in diploid individuals of Chrysanthemum zawadskii and related species (Asteraceae): evidence for chromosome rearrangements. Cytologia 73:425–435.  https://doi.org/10.1508/cytologia.73.425 CrossRefGoogle Scholar
  34. Kim SJ, Lee CH, Kim J, Kim KS (2014) Phylogenetic analysis of Korean native Chrysanthemum species based on morphological characteristics. Sci Hortic 175:278–289.  https://doi.org/10.1016/j.scienta.2014.06.018 CrossRefGoogle Scholar
  35. Kim SJ, Cho KS, Yoo KO, Lim KB, Hwang YJ, Chang DC, Kim KS (2015) Sequence analysis of the internal transcribed spacer (ITS) region of the nuclear ribosomal DNA (nrDNA) Chrysanthemum species in Korea. Hortic Environ Biotechnol 56:44–53.  https://doi.org/10.1007/s13580-015-0085-2 CrossRefGoogle Scholar
  36. Kim J, Kim D-S, Lee ES, Ahn Y-K, Chae WB, Lee S-S (2017) The construction of a Chinese cabbage marker-assisted backcrossing system using high-throughput genotyping technology. Hortic Sci Technol 35:232–242.  https://doi.org/10.12972/kjhst.20170026 Google Scholar
  37. Kim J, Lee SY, Kim D, Lee E-S, Lee H-E, Han K, Kang B-C (2019) Genotyping of octoploid strawberry inbred lines by SNP discovery using genotyping-by-sequencing. Hortic Environ Biotechnol 60:69–80.  https://doi.org/10.1007/s13580-018-0100-5 CrossRefGoogle Scholar
  38. Lee CH, Kim KS (2000) Genetic diversity of Chrysanthemum zawadskii Herb. and the related groups in Korea using RAPDs. J Kor Soc Hortic Sci 41:230–236Google Scholar
  39. Li XL, Chen FD (2007) Self-incompatibility in Dendranthema morifolium. J Wuhan Bot Res 25:591–595Google Scholar
  40. Li W, Zhang P, Fellers JP, Friebe B, Gill BS (2004) Sequence composition, organization, and evolution of the core Triticeae genome. Plant J 40:500–511.  https://doi.org/10.1111/j.1365-313X.2004.02228.x CrossRefGoogle Scholar
  41. Li J, Wan Q, Abbott RJ, Rao GY (2013) Geographical distribution of cytotypes in the Chrysanthemum indicum complex as evidenced by ploidy level and genome-size variation. J Syst Evol 51:196–204.  https://doi.org/10.1111/j.1759-6831.2012.00241.x CrossRefGoogle Scholar
  42. Li H, Chen S, Song A, Wang H, Fang W, Guan Z, Jiang J, Chen F (2014) RNA-Seq derived identification of differential transcription in the chrysanthemum leaf following inoculation with Alternaria tenuissima. BMC Genom 15:9.  https://doi.org/10.1186/1471-2164-15-9 CrossRefGoogle Scholar
  43. Li P, Zhang F, Chen S, Jiang J, Wang H, Su J, Fang W, Guan Z, Chen F (2016) Genetic diversity, population structure and association analysis in cut chrysanthemum (Chrysanthemum morifolium Ramat.). Mol Genet Genom 291:1117–1125.  https://doi.org/10.1007/s00438-016-1166-3 CrossRefGoogle Scholar
  44. Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M (2012) Comparison of next-generation sequencing systems. J Biome Biotechnol 2012:251–364.  https://doi.org/10.1155/2012/251364 Google Scholar
  45. Luo C, Chen D, Cheng X, Zhao H, Huang C (2016) Genome size estimations in Chrysanthemum and correlations with molecular phylogenies. Genet Res Crop Evol 64:1451–1463.  https://doi.org/10.1007/s10722-016-0448-2 CrossRefGoogle Scholar
  46. Manivannan A, Kim JH, Yang EY, Ahn YK, Lee ES, Choi S, Kim DS (2018) Next-generation sequencing approaches in genome-wide discovery of single nucleotide polymorphism markers associated with pungency and disease resistance in pepper. Hindawi BioMed Res Int Vol 2018, Article ID 5646213.  https://doi.org/10.1155/2018/5646213
  47. Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci USA 74:560–564CrossRefGoogle Scholar
  48. Michael TP, Jackson S (2013) The first 50 plant genome. Plant Genome 6:2.  https://doi.org/10.3835/plantgenome2013.03.0001in CrossRefGoogle Scholar
  49. Morey M, Fernández-Marmiesse A, Castiñeiras D, Fraga JM, Couce ML, Cocho JA (2013) A glimpse into past, present, and future DNA sequencing. Mol Gen Met 110:3–24.  https://doi.org/10.1016/j.ymgme.2013.04.024 CrossRefGoogle Scholar
  50. Nguyen KT, Yu JW, Choi HW, In BC, Lim JH (2018) Optimization of Genotyping-by-sequencing (GBS) in Chrysanthemums: selecting proper restriction enzymes for GBS library construction. Korean J Hortic Sci Technol 36:108–114.  https://doi.org/10.12972/kjhst.20180012 Google Scholar
  51. Nielsen R, Paul JS, Albrechtsen A, Song YS (2011) Genotype and SNP calling from next generation sequencing data. Nat Rev Genet 12:443–451.  https://doi.org/10.1038/nrg2986 CrossRefGoogle Scholar
  52. Pachauri P, Shikarvar RS, Tiwari S, Shyam C, Kushwah (2018) Application of next generation sequencing system in groundnut improvement. Int J Pure Appl Biosci 6(3):616–622.  https://doi.org/10.18782/2320-7051.6441 CrossRefGoogle Scholar
  53. Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7:e37135.  https://doi.org/10.1371/journal.pone.0037135 CrossRefGoogle Scholar
  54. Phan NT, Sim S-C (2017) Genomic tools and their implications for vegetable breeding. Hortic Sci Technol 35:149–164.  https://doi.org/10.12972/kjhst.20170018 Google Scholar
  55. Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 5:92–102.  https://doi.org/10.3835/plantgenome2012.05.0005 CrossRefGoogle Scholar
  56. Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:e32253.  https://doi.org/10.1371/journal.pone.0032253 CrossRefGoogle Scholar
  57. Qi Y, Liu Y, Zhang Z, Gao J, Guan Z, Fang W, Chen F, Jiang J (2018) The over-expression of a chrysanthemum gene encoding an RNA polymerase II CTD phosphatase-like 1 enzyme enhances tolerance to heat stress. Hortic Res 5:37.  https://doi.org/10.1038/s41438-018-0037-y CrossRefGoogle Scholar
  58. Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP, Gu Y (2012) A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genom 13:341–353.  https://doi.org/10.1186/1471-2164-13-341 CrossRefGoogle Scholar
  59. Ren L, Liu T, Cheng Y, Sun J, Gao J, Dong B, Chen S, Chen F, Jiang J (2016) Transcriptomic analysis of differentially expressed genes in the floral transition of the summer flowering chrysanthemum. BMC Genom 17:673.  https://doi.org/10.1186/s12864-016-3024-4 CrossRefGoogle Scholar
  60. Sanger F, Coulson AR (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94:441–448.  https://doi.org/10.1016/0022-2836(75)90213-2 CrossRefGoogle Scholar
  61. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467.  https://doi.org/10.1073/pnas.74.12.5463 CrossRefGoogle Scholar
  62. SanMiguel P, Tikhonov A, Jin Y-K, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, Bennetzen JL (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768.  https://doi.org/10.1126/science.274.5288.765 CrossRefGoogle Scholar
  63. Sasaki K, Mitsuda N, Nashima K, Kishimoto K, Katayose Y, Kanamori H, Ohmiya A (2017) Generation of expressed sequence tags for discovery of genes responsible for floral traits of Chrysanthemum morifolium by next-generation sequencing technology. BMC Genom 18:683.  https://doi.org/10.1186/s12864-017-4061-3 CrossRefGoogle Scholar
  64. Shulga OA, Nedoluzhko AV, Shchennikova AV, Gruzdeva NM, Shelenkov AA, Sharko FS, Sokolov AS, Pantiukh ES, Rastorguev SM, Prokhortchouk EB, Skryabin KG (2016) Profiling of microRNAs in wild type and early flowering transgenic Chrysanthemum morifolium by deep sequencing. Plant Cell Tissue Organ Cult.  https://doi.org/10.1007/s11240-016-1109-z Google Scholar
  65. Singh N, Wu S, Raupp WJ, Sehgal S, Arora S, Tiwari V, Vikram P, Singh S, Chhuneja P, Gill BS, Poland J (2018) Efficient curation of genebanks using next generation sequencing reveals substantial duplication of germplasm accesstions. bioRxiv.  https://doi.org/10.1101/410779
  66. Sonah H, Bastien M, Iquira E, Tardivel A, Légaré G, Boyle B, Normandeau E, Laroche J, Larose S, Jean M, Belzile F (2013) An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PLoS ONE 8:e54603.  https://doi.org/10.1371/journal.pone.0054603 CrossRefGoogle Scholar
  67. Song C, Liu Y, Song A, Dong G, Zhao H, Sun W, Ramakrishnan S, Wang Y, Wang S, Li T, Niu Y, Jiang J, Dong B, Xia Y, Chen S, Hu Z, Chen F, Chen S (2018) The Chrysanthemum nankingense genome provides insights into the evolution and diversification of Chrysanthemum flowers and medicinal traits. Mol Plant 11:1482–1491.  https://doi.org/10.1016/j.molp.2018.10.003 CrossRefGoogle Scholar
  68. Spindel J, Begum H, Akdemir D, Virk P, Collard B, Redona E, Atlin G (2015) Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite. Tropical rice breeding lines. PLoS Genet 11:e1005350.  https://doi.org/10.1371/journal.pgen.1004982 CrossRefGoogle Scholar
  69. Stolle E, Moritz RFA (2013) RESTseq—efficient benchtop population genomics with RESTriction fragment SEQuencing. PLoS ONE 8:e63960.  https://doi.org/10.1371/journal.pone.0063960 CrossRefGoogle Scholar
  70. Strickler SR, Bombarely A, Mueller LA (2012) Designing a transcriptome next-generation sequencing project for a nonmodel plant species. Am J Bot 99:257–266.  https://doi.org/10.3732/ajb.1100292 CrossRefGoogle Scholar
  71. Su J, Zhang F, Chong X, Song A, Guan Z, Fang W, Chen F (2019) Genome-wide association study identifies favorable SNP alleles and candidate genes for waterlogging tolerance in chrysanthemums. Hortic Res 6:21.  https://doi.org/10.1038/s41438-018-0101-7 CrossRefGoogle Scholar
  72. Swaminathan K, Varala K, Hudson ME (2007) Global repeat discovery and estimation of genomic copy number in a large, complex genome using a highthroughput 454 sequence survey. BMC Genom 8:1471–2164.  https://doi.org/10.1186/1471-2164-8-132 CrossRefGoogle Scholar
  73. Toonen RJ, Puritz JB, Forsman ZH, Whitney JL, Fernandez-Silva I, Andrews KR, Bird CE (2013) ezRAD: a simplified method for genomic genotyping in non-model organisms. Peer J 1:e203.  https://doi.org/10.7717/peerj.203 CrossRefGoogle Scholar
  74. Torkamaneh D, Laroche J, Belzile F (2016) Genome-wide SNP calling from genotyping by sequencing (GBS) data: a comparison of seven pipelines and two sequencing technologies. PLoS ONE 11(8):e0161333.  https://doi.org/10.1371/journal.pone.0161333 CrossRefGoogle Scholar
  75. Uitdewilligen JG, Wolters AM, D’Hoop BB, Borm TJ, Visser RG, van Eck HJ (2013) A next-generation sequencing method for genotyping-bysequencing of highly heterozygous autotetraploid potato. PLoS ONE 8:e62355.  https://doi.org/10.1371/journal.pone.0062355 CrossRefGoogle Scholar
  76. Vallès J, Canela MÁ, Garcia S, Hidalgo O, Pellicer J, Sánchez-Jiménez I, Siljak-Yakovlev S, Vitales D, Garnatje T (2013) Genome size variation and evolution in the family Asteraceae. Caryologia 66:221–235.  https://doi.org/10.1080/00087114.2013.829690 CrossRefGoogle Scholar
  77. van Eijk MJT, Broekhof JLN, van der Poel HJA, Hogers RCJ, Schneiders H, Kamerbeek J, Verstege E, van Aart JW, Geerlings H, Buntjer JB, van Oeveren AJ, Vos P (2004) SNPWave™: a flexible multiplexed SNP genotyping technology. Nucleic Acids Res 32:e47.  https://doi.org/10.1093/nar/gnh045 CrossRefGoogle Scholar
  78. van Geest G, Bourke PM, Voorrips RE, Marasek-Ciolakowska A, Liao Y, Post A, van Meeteren U, Visser RGF, Maliepaard C, Arens P (2017a) An ultra-dense integrated linkage map for hexaploid chrysanthemum enables multi-allelic QTL analysis. Theor Appl Genet 130:2527–2541.  https://doi.org/10.1007/s00122-017-2974-5 CrossRefGoogle Scholar
  79. van Geest G, Voorrips RE, Esselink D, Post A, Visser RGF, Arens P (2017b) Conclusive evidence for hexasomic inheritance in chrysanthemum based on analysis of a 183 k SNP array. BMC Genom 18:585.  https://doi.org/10.1186/s12864-017-4003-0 CrossRefGoogle Scholar
  80. van Orsouw NJ, Hogers RCJ, Janssen A, Yalcin F, Snoeijers S, Verstege E, Schneiders H, van der Poel H, van Oeveren J, Verstegen H, van Eijk MJT (2007) Complexity reduction of polymorphic sequences (CRoPS™): a novel approach for large-scale polymorphism discovery in complex genomes. PLoS ONE 2:e1172.  https://doi.org/10.1371/journal.pone.0001172 CrossRefGoogle Scholar
  81. Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:552.  https://doi.org/10.1016/j.tibtech.2009.05.006 CrossRefGoogle Scholar
  82. Wang H, Jiang J, Chen S, Qi X, Peng H, Li P, Song A, Guan Z, Fang W, Liao Y, Chen F (2013a) Next-generation sequencing of the Chrysanthemum nankingense (Asteraceae) transcriptome permits large-scale unigene assembly and SSR marker discovery. PLoS ONE 8:e62293.  https://doi.org/10.1371/journal.pone.0062293 CrossRefGoogle Scholar
  83. Wang Y, Huang H, Ma Y, Fu J, Wang L, Dai S (2013b) Construction and de novo characterization of a transcriptome of Chrysanthemum lavandulifolium: analysis of gene expression patterns in floral bud emergence. Plant Cell Tissue Organ Cult 116:297–309.  https://doi.org/10.1007/s11240-013-0404-1 CrossRefGoogle Scholar
  84. Wang H, Chen S, Jiang J, Zhang F, Chen F (2015) Reference gene selection for cross-species and cross-ploidy level comparisons in Chrysanthemum spp. Sci Rep 5:8094.  https://doi.org/10.1038/srep08094 CrossRefGoogle Scholar
  85. Wang F, Zhong X, Wang H, Song A, Chen F, Fang W, Jiang J, Teng N (2018a) Investigation of differences in fertility among progenies from self-pollinated Chrysanthemum. Int J Mol Sci 19:832.  https://doi.org/10.3390/ijms19030832 CrossRefGoogle Scholar
  86. Wang K, Bai Z, Liang Q, Liu Q, Zhang L, Pan Y, Liu G, Jiang B, Zhang F, Jia Y (2018b) Transcriptome analysis of chrysanthemum (Dendranthema grandiflorum) in response to low temperature stress. BMC Genom 19:319.  https://doi.org/10.1186/s12864-018-4706-x CrossRefGoogle Scholar
  87. Wang S, Song Q, Li S, Hu Z, Dong G, Song C, Huang H, Liu Y (2018c) Assembly of a complete mitogenome of Chrysanthemum nankingense using Oxford Nanopore long reads and the diversity and evolution of Asteraceae mitogenomes. Genes 9:547.  https://doi.org/10.3390/genes9110547 CrossRefGoogle Scholar
  88. Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, He W, Chen YJ, Makhijani V, Roth GT, Gomes X, Tartaro K, Niazi F, Turcotte CL, Irzyk GP, Lupski JR, Chinault C, Song XZ, Liu Y, Yuan Y, Nazareth L, Qin X, Muzny DM, Margulies M, Weinstock GM, Gibbs RA, Rothberg JM (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature 452:872–876.  https://doi.org/10.1038/nature06884 CrossRefGoogle Scholar
  89. Won SY, Kim JS, Kang S-H, Sohn S-H (2016) Current status and prospects of chrysanthemum genomics. J Plant Biotechnol 43:272–280.  https://doi.org/10.5010/JPB.2016.43.3.272 CrossRefGoogle Scholar
  90. Xu YF, Chen FD, Chen SM, Teng NJ, Li FT (2009) Seed set of inbred, meiosis and pollen capacity of 5 chrysanthemum cultivars. Acta Bot Bore Occi Sin 29:469–474Google Scholar
  91. Xu Y, Gao S, Yang Y, Huang M, Cheng L, Wei Q, Fei Z, Gao J, Hong B (2013) Transcriptome sequencing and whole genome expression profiling of chrysanthemum under dehydration stress. BMC Genom 14:662.  https://doi.org/10.1186/1471-2164-14-662 CrossRefGoogle Scholar
  92. Yao Y, Li K, Liu H, Duncan RW, Guo S, Xiao L, Du D (2017) Whole-genome re-sequencing and fine mapping of an orange petal color gene (Bnpc1) in spring Brassica napus L. to a 151-kb region. Euphytica 213:165.  https://doi.org/10.1007/s10681-017-1959-4 CrossRefGoogle Scholar
  93. Yuan W-J, Ye S, Du L-H, Li S-M, Miao X, Shang F-D (2016) Isolation and characterization of microsatellite markers for Dendranthema morifolium (Asteraceae) using next-generation sequencing. Genet Mol Res.  https://doi.org/10.4238/gmr.15048765 Google Scholar
  94. Zhang F, Chen S, Chen F, Fang W, Li F (2010) A preliminary genetic linkage map of chrysanthemum (Chrysanthemum morifolium) cultivars using RAPD, ISSR and AFLP markers. Sci Hortic 125:422–428.  https://doi.org/10.1016/j.scienta.2010.03.028 CrossRefGoogle Scholar
  95. Zhang F, Chen S, Chen F, Fang W, Chen Y (2011a) SRAP-based mapping and QTL detection for inflorescence-related traits in chrysanthemum (Dendranthema morifolium). Mol Breeding 27:11–23.  https://doi.org/10.1007/s11032-010-9409-1 CrossRefGoogle Scholar
  96. Zhang J, Chiodini R, Badr A, Zhang G (2011b) The impact of next-generation sequencing on genomics. J Genet Genom 38:95–109.  https://doi.org/10.1016/j.jgg.2011.02.003 CrossRefGoogle Scholar

Copyright information

© Korean Society for Horticultural Science 2019

Authors and Affiliations

  1. 1.Department of Plant BiotechnologySejong UniversitySeoulKorea

Personalised recommendations