Advertisement

Human Cell

pp 1–10 | Cite as

MiR-499/PRDM16 axis modulates the adipogenic differentiation of mouse skeletal muscle satellite cells

  • Juan Jiang
  • PengZhou Li
  • Hao Ling
  • ZhouZhou Xu
  • Bo Yi
  • Shaihong Zhu
Research Article

Abstract

Obesity is associated with increased risks of diverse diseases; brown adipose tissue (BAT) can increase energy expenditure and protect against obesity by increasing the decomposition of white adipose tissue (WAT) to enhance the non-coupled oxidative phosphorylation of fatty acid in adipocytes and contributes to weight loss. However, BAT is abundant in only small rodents and newborn humans, but not in adults. PRDM16 is a key factor that induces the differentiation of skeletal muscle precursors to brown adipocytes and simultaneously inhibits myogenic differentiation. In the present study, we set insulin-induced skeletal muscle satellite cells (SMSCs) adipogenic differentiation model, as confirmed by the contents of adipogenic markers PRDM16, UCP1 and PGC1α and myogenic markers MyoD1 and MyoG. We selected miR-499 as candidate miRNA, which might regulate PRDM16 to affect SMSCs adipogenic differentiation. Possibly through directly binding to PRDM16 3′-UTR, miR-499 negatively regulated PRDM16 expression and hindered SMSCs adipogenic differentiation by reducing adipogenic markers PRDM16, UCP1 and PGC1α and increasing myogenic markers MyoD1 and MyoG. PRDM16 overexpression could partially reverse the effect of miR-499 on the above markers and SMSCs adipogenic differentiation. Taken together, miR-499/PRDM16 axis can affect the balance between SMSC myogenic and adipogenic differentiation, targeting miR-499 to rescue PRDM16 expression, thus promoting SMSCs adipogenic differentiation may be a promising strategy for obesity treatment.

Keywords

Skeletal muscle satellite cells (SMSCs) Adipogenic differentiation MiR-499 PRDM16 Brown adipocyte 

Notes

Acknowledgements

This work was supported by Hunan National Natural Science Fund (2015jj2155).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

References

  1. 1.
    Wang H, Peng DQ. New insights into the mechanism of low high-density lipoprotein cholesterol in obesity. Lipids Health Dis. 2011;10:176.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Wu CL, Zhao SP, Yu BL. Intracellular role of exchangeable apolipoproteins in energy homeostasis, obesity and non-alcoholic fatty liver disease. Biol Rev Camb Philos Soc. 2015;90:367–76.CrossRefPubMedGoogle Scholar
  3. 3.
    Yu BL, Zhao SP, Hu JR. Cholesterol imbalance in adipocytes: a possible mechanism of adipocytes dysfunction in obesity. Obes Rev. 2010;11:560–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Liu X, Cervantes C, Liu F. Common and distinct regulation of human and mouse brown and beige adipose tissues: a promising therapeutic target for obesity. Protein Cell. 2017;8:446–54.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Finucane MM, Stevens GA, Cowan MJ, et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet. 2011;377:557–67.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Doak CM, Wijnhoven TM, Schokker DF, Visscher TL, Seidell JC. Age standardization in mapping adult overweight and obesity trends in the WHO European Region. Obes Rev. 2012;13:174–91.CrossRefPubMedGoogle Scholar
  7. 7.
    Sun X, Li P, Yang X, Li W, Qiu X, Zhu S. From genetics and epigenetics to the future of precision treatment for obesity. Gastroenterol Rep (Oxf). 2017;5:266–70.CrossRefGoogle Scholar
  8. 8.
    Giralt M, Villarroya F. White, brown, beige/brite: different adipose cells for different functions? Endocrinology. 2013;154:2992–3000.CrossRefPubMedGoogle Scholar
  9. 9.
    Cinti S. The adipose organ. Prostaglandins Leukot Essent Fatty Acids. 2005;73:9–15.CrossRefPubMedGoogle Scholar
  10. 10.
    Cypess AM, Kahn CR. The role and importance of brown adipose tissue in energy homeostasis. Curr Opin Pediatr. 2010;22:478–84.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Seale P, Lazar MA. Brown fat in humans: turning up the heat on obesity. Diabetes. 2009;58:1482–4.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Cypess AM, Lehman S, Williams G, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360:1509–17.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Tseng YH, Cypess AM, Kahn CR. Cellular bioenergetics as a target for obesity therapy. Nat Rev Drug Discov. 2010;9:465–82.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Stephens M, Ludgate M, Rees DA. Brown fat and obesity: the next big thing? Clin Endocrinol (Oxf). 2011;74:661–70.CrossRefGoogle Scholar
  15. 15.
    Almind K, Manieri M, Sivitz WI, Cinti S, Kahn CR. Ectopic brown adipose tissue in muscle provides a mechanism for differences in risk of metabolic syndrome in mice. Proc Natl Acad Sci USA. 2007;104:2366–71.CrossRefPubMedGoogle Scholar
  16. 16.
    Lepper C, Fan CM. Inducible lineage tracing of Pax7-descendant cells reveals embryonic origin of adult satellite cells. Genesis. 2010;48:424–36.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Seale P, Bjork B, Yang W, et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature. 2008;454:961–7.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Seale P, Kajimura S, Yang W, et al. Transcriptional control of brown fat determination by PRDM16. Cell Metab. 2007;6:38–54.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Farmer SR. Molecular determinants of brown adipocyte formation and function. Genes Dev. 2008;22:1269–75.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Chinnadurai G. Transcriptional regulation by C-terminal binding proteins. Int J Biochem Cell Biol. 2007;39:1593–607.CrossRefPubMedGoogle Scholar
  21. 21.
    Kajimura S, Seale P, Tomaru T, et al. Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes Dev. 2008;22:1397–409.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Yin H, Pasut A, Soleimani VD, et al. MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16. Cell Metab. 2013;17:210–24.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Danoviz ME, Yablonka-Reuveni Z. Skeletal muscle satellite cells: background and methods for isolation and analysis in a primary culture system. Methods Mol Biol. 2012;798:21–52.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gharaibeh B, Lu A, Tebbets J, et al. Isolation of a slowly adhering cell fraction containing stem cells from murine skeletal muscle by the preplate technique. Nat Protoc. 2008;3:1501–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Harding RL, Clark DL, Halevy O, Coy CS, Yahav S, Velleman SG. The effect of temperature on apoptosis and adipogenesis on skeletal muscle satellite cells derived from different muscle types. Physiol Rep. 2015.  https://doi.org/10.14814/phy2.12539.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Scime A, Grenier G, Huh MS, et al. Rb and p107 regulate preadipocyte differentiation into white versus brown fat through repression of PGC-1alpha. Cell Metab. 2005;2:283–95.CrossRefPubMedGoogle Scholar
  27. 27.
    Tang R, Ma F, Li W, Ouyang S, Liu Z, Wu J. miR-206-3p Inhibits 3T3-L1 Cell Adipogenesis via the c-Met/PI3K/Akt Pathway. Int J Mol Sci. 2017;18(7):1510.  https://doi.org/10.3390/ijms18071510.CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Saccone V, Consalvi S, Giordani L, et al. HDAC-regulated myomiRs control BAF60 variant exchange and direct the functional phenotype of fibro-adipogenic progenitors in dystrophic muscles. Genes Dev. 2014;28:841–57.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Jang YJ, Jung CH, Ahn J, Gwon SY, Ha TY. Shikonin inhibits adipogenic differentiation via regulation of mir-34a-FKBP1B. Biochem Biophys Res Commun. 2015;467:941–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Sun YM, Qin J, Liu SG, et al. PDGFRα Regulated by miR-34a and FoxO1 Promotes Adipogenesis in Porcine Intramuscular Preadipocytes through Erk Signaling Pathway. Int J Mol Sci. 2017;18(11):2424.  https://doi.org/10.3390/ijms18112424.CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Bork S, Horn P, Castoldi M, Hellwig I, Ho AD, Wagner W. Adipogenic differentiation of human mesenchymal stromal cells is down-regulated by microRNA-369-5p and up-regulated by microRNA-371. J Cell Physiol. 2011;226:2226–34.CrossRefPubMedGoogle Scholar
  32. 32.
    Walden TB, Petrovic N, Nedergaard J. PPARalpha does not suppress muscle-associated gene expression in brown adipocytes but does influence expression of factors that fingerprint the brown adipocyte. Biochem Biophys Res Commun. 2010;397:146–51.CrossRefPubMedGoogle Scholar
  33. 33.
    Fu T, Seok S, Choi S, et al. MicroRNA 34a inhibits beige and brown fat formation in obesity in part by suppressing adipocyte fibroblast growth factor 21 signaling and SIRT1 function. Mol Cell Biol. 2014;34:4130–42.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Nesan D, Tavallaee G, Koh D, Bashiri A, Abdin R, Ng DS. Lecithin:Cholesterol Acyltransferase (LCAT) deficiency promotes differentiation of satellite cells to brown adipocytes in a cholesterol-dependent manner. J Biol Chem. 2015;290:30514–29.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Tiraby C, Tavernier G, Lefort C, et al. Acquirement of brown fat cell features by human white adipocytes. J Biol Chem. 2003;278:33370–6.CrossRefPubMedGoogle Scholar
  36. 36.
    Megeney LA, Kablar B, Garrett K, Anderson JE, Rudnicki MA. MyoD is required for myogenic stem cell function in adult skeletal muscle. Genes Dev. 1996;10:1173–83.CrossRefPubMedGoogle Scholar
  37. 37.
    Weintraub H, Davis R, Tapscott S, et al. The myoD gene family: nodal point during specification of the muscle cell lineage. Science. 1991;251:761–6.CrossRefPubMedGoogle Scholar
  38. 38.
    Brunetti A, Goldfine ID. Role of myogenin in myoblast differentiation and its regulation by fibroblast growth factor. J Biol Chem. 1990;265:5960–3.PubMedGoogle Scholar
  39. 39.
    Yutzey KE, Rhodes SJ, Konieczny SF. Differential trans activation associated with the muscle regulatory factors MyoD1, myogenin, and MRF4. Mol Cell Biol. 1990;10:3934–44.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Gesta S, Tseng YH, Kahn CR. Developmental origin of fat: tracking obesity to its source. Cell. 2007;131:242–56.CrossRefPubMedGoogle Scholar
  41. 41.
    Hansen JB, Kristiansen K. Regulatory circuits controlling white versus brown adipocyte differentiation. Biochem J. 2006;398:153–68.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Rosen ED, Spiegelman BM. Molecular regulation of adipogenesis. Annu Rev Cell Dev Biol. 2000;16:145–71.CrossRefPubMedGoogle Scholar
  43. 43.
    Asakura A, Komaki M, Rudnicki M. Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation. 2001;68:245–53.CrossRefPubMedGoogle Scholar
  44. 44.
    Shefer G, Wleklinski-Lee M, Yablonka-Reuveni Z. Skeletal muscle satellite cells can spontaneously enter an alternative mesenchymal pathway. J Cell Sci. 2004;117:5393–404.CrossRefPubMedGoogle Scholar
  45. 45.
    Stranger BE, Stahl EA, Raj T. Progress and promise of genome-wide association studies for human complex trait genetics. Genetics. 2011;187:367–83.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ebert MS, Sharp PA. Roles for microRNAs in conferring robustness to biological processes. Cell. 2012;149:515–24.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Dumortier O, Hinault C, Van Obberghen E. MicroRNAs and metabolism crosstalk in energy homeostasis. Cell Metab. 2013;18:312–24.CrossRefPubMedGoogle Scholar
  48. 48.
    Xu P, Vernooy SY, Guo M, Hay BA. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol. 2003;13:790–5.CrossRefPubMedGoogle Scholar
  49. 49.
    Jordan SD, Kruger M, Willmes DM, et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol. 2011;13:434–46.CrossRefPubMedGoogle Scholar
  50. 50.
    Wang XY, Chen XL, Huang ZQ, Chen DW, Yu B, He J, Luo JQ, Luo YH, Chen H, Zheng P, Yu J. MicroRNA-499-5p regulates porcine myofiber specification by controlling Sox6 expression. Animal. 2017;11(12):2268–74.CrossRefPubMedGoogle Scholar
  51. 51.
    Drummond MJ, Glynn EL, Fry CS, Dhanani S, Volpi E, Rasmussen BB. Essential amino acids increase microRNA-499, -208b, and -23a and downregulate myostatin and myocyte enhancer factor 2C mRNA expression in human skeletal muscle. J Nutr. 2009;139:2279–84.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Becerril S, Gomez-Ambrosi J, Martin M, et al. Role of PRDM16 in the activation of brown fat programming. Relevance to the development of obesity. Histol Histopathol. 2013;28:1411–25.PubMedGoogle Scholar

Copyright information

© Japan Human Cell Society and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of General Surgery, Third Xiangya HospitalCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations