Sankhya B

pp 1–7 | Cite as

Absolute Continuity of Diffusion Bridges

  • Paul McGillEmail author


Given a Brownian motion (bt) and \(\phi : {\mathbb {R}} \to {\mathbb {R}}\) of finite variation on compacts, the SDE \( z^{\prime } = b^{\prime } - \phi (z) \) determines a unique regular diffusion. We establish equivalence of their bridge laws on \({\mathbb {C}}([0,1])\) via absolute continuity for an approximate version – endpoint in a bounded interval. The periodic case facilitates manipulations with circular diffusion measures.


Approximate bridge Girsanov formula Circular measure 

AMS (2000) subject classification

Primary 60J65 Secondary 60H10, 28C20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cambronero, S. and McKean, H.P. (1999). The ground state eigenvalue of hill’s equation with white noise potential. Comm. Pure Appl. Math. 52, 10, 1277–1294.MathSciNetCrossRefGoogle Scholar
  2. Cambronero, S. (2002). Some Ornstein-Uhlenbeck Potentials for the one-dimensional schrödinger Operator Part II: Position-dependent Drift. Revista de Mathemática: Teoria y Applicationes 9, 2, 31–38.Google Scholar
  3. Dellacherie, C. and Meyer, P.-A. (1975). Probabilités Et Potentiel, Ch.I-IV. Hermann, Paris.zbMATHGoogle Scholar
  4. Itô, K. and McKean, H.P. (1974). Diffusion processes and their sample paths, 2nd. Springer Verlag, Berlin.zbMATHGoogle Scholar
  5. Jamison, B. (1974). Reciprocal processes. Z. Wahr. Verw Geb. 30, 65–86.MathSciNetCrossRefGoogle Scholar
  6. McGill, P. (2018). On Drifting Brownian Motion made Periodic, séminaire de probabilités XLIX. Springer Lecture Notes 2215, 363–373.CrossRefGoogle Scholar
  7. McKean, H.P. and Vaninsky, K.T. (1994). Statistical mechanics of nonlinear wave equations, trends and perspectives in applied mathematics. Springer-Verlag, Berlin, Sirovich, L. (ed.), p. 239–264.CrossRefGoogle Scholar
  8. Rudin, W. (1966). Real and complex analysis. McGraw-Hill, New York.zbMATHGoogle Scholar
  9. Revuz, D. and Yor, M. (1999). Continuous martingales and brownian motion, 3rd. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  10. Zvonkin, A.K. (1974). A transformation of the phase space of a process that removes the drift. Math. Sb. 152, 129–149.MathSciNetCrossRefGoogle Scholar

Copyright information

© Indian Statistical Institute 2019

Authors and Affiliations

  1. 1.Département de MathématiquesUniversité Claude Bernard Lyon 1VilleurbanneFrance

Personalised recommendations