Sankhya B

, Volume 81, Issue 1, pp 123–132 | Cite as

Intrinsic Dimensionality Estimation for Data Points in Local Region

  • Xiaorong WangEmail author
  • Aiqing Xu


Intrinsic dimensionality estimation plays a pivotal role in dealing with high-dimensional datasets. In this work, we aim to develop a robust dimensionality estimation algorithm by investigating the intrinsic dimensionality estimation methods for data points in its local region. Our method is able to effectively utilise the geometric information in the local region for dimensionality. We also show different methods to improve the estimation by using perspectives from the local region and different preprocessing methods.

Keywords and phrases

Numerical analysis Probabilistic methods Models of computation Nonparametric inference Estimation 

AMS (2000) subject classification

Primary 62G05 Secondary 62P30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China, No.15KJD110001


  1. Aguirre, L.A., Rodrigues, G.G. and Mendes, E.M. (1997). Nonlinear identification and cluster analysis of chaotic attractors from a real implementation of Chua’s circuit. Int. J. Bifur. Chaos7, 1411–1423.CrossRefGoogle Scholar
  2. Camastra, F. and Filippone, M. (2009). A comparative evaluation of nonlinear dynamics methods for time series prediction. Neural Comput. Applic.18, 1021–1039.CrossRefGoogle Scholar
  3. Camastra, F. and Vinciarelli, A. (2002). Estimating the intrinsic dimension of data with a fractal-based method. IEEE Trans. Pattern Anal. Mach. Intell.24, 1404–1407.CrossRefGoogle Scholar
  4. Camastra, F. and Staiano, A. (2016). Intrinsic dimension estimation: Advances and open problems. Inform. Sci.328, 26–41.CrossRefGoogle Scholar
  5. Ceruti, C., Bassis, S., Rozza, A., Lombardi, G., Casiraghi, E. and Campadelli, P. (2012). DANCo: Dimensionality from angle and norm concentration. arXiv:1206.3881.
  6. Costa, J.A. and Hero, A.O. (2005). Learning intrinsic dimension and entropy of shapes. In Krim, H. and Yezzi, T. (eds.), Statistics and analysis of shapes. Basel: Birkhuser.Google Scholar
  7. Donoho, D.L. (2000). Aide-memoire. High-dimensional data analysis: the curses and blessings of dimensionality. American Math Society Lecture-Math Challenges of the 21st Century.Google Scholar
  8. Farahmand, A.M. and Szepesvri, C. (2007). Manifold-adaptive dimension estimation. In ICML 07: Proceedings of the 24th international conference on Machine learning, pp. 265–272.Google Scholar
  9. Fan, M., Qiao, H. and Zhang, B. (2009). Intrinsic dimension estimation of manifolds by incising balls. Pattern Recogn.42, 780–787.CrossRefGoogle Scholar
  10. Hein, M. (2005). Intrinsic dimensionality estimation of submanifolds in euclidean space. In Proc. of ICML, pp. 289–296.Google Scholar
  11. Hua, L., Komuro, M. and Matsumoto, T. (1985). The double scroll. IEEE Trans. Circ. Syst.32, 8797–818.MathSciNetGoogle Scholar
  12. Hubner, U., Weiss, C.O., Abraham, N.B. and Tang, D. (1994). Lorenz-like chaos in NH 3-FIR lasers, Time Series Prediction. Forecasting the Future and Understanding the Past, 73-104. Addison Wesley.Google Scholar
  13. Levina, E. and Bickel, P.J. (2005). Maximum likelihood estimation of intrinsic dimension. Adv. Neural Inf. Process. Syst.17, 777–784.Google Scholar
  14. Lombardi, G., Rozza, A., Ceruti, C., Casiraghi, E. and Campadelli, P. (2011). Minimum neighbor distance estimators of intrinsic dimension. Inproceedings of European conference on machine learning (ECML)6912, 374–389.zbMATHGoogle Scholar
  15. Roweis, S.T. and Saul, L.K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science290, 2323–2326.CrossRefGoogle Scholar
  16. Rozza, A., Lombardi, G., Rosa, M., Casiraghi, E. and Campadelli, P. (2011). IDEA: intrinsic dimension esti-mation algorithm. In Proceedings of international conference on image analysis and processing (ICIAP) pp. 6978 433–0442.CrossRefGoogle Scholar
  17. Rozza, A., Lombardi, G., Ceruti, C., Siraghi, E.C. and Campadelli, P. (2012). Novel high intrinsic dimensionality estimators. Machine Learning89, 37–65.MathSciNetCrossRefGoogle Scholar
  18. Tenenbaum, J.B., Silva, V.D. and Langford, J.C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science290, 2319–2323.CrossRefGoogle Scholar
  19. Verveer, P.J. and Duin, R.P.W. (1995). An evaluation of intrinsic dimensionality estimators. IEEE Trans. Pattern Anal. Mach. Intell.17, 81686.CrossRefGoogle Scholar
  20. Yu, K., Zhang, T. and Gong, Y. (2009). Nonlinear learning using local coordinate coding. Adv. Neural Inf. Process. Syst. Google Scholar

Copyright information

© Indian Statistical Institute 2018

Authors and Affiliations

  1. 1.Department of Applied MathematicsNanjing University of Finance and EconomicsNanjingPeople’s Republic of China

Personalised recommendations