Sankhya B

, Volume 80, Issue 2, pp 305–340 | Cite as

Dynamic Measurement of Poverty: Modeling and Estimation

  • Guglielmo D’AmicoEmail author
  • Philippe Regnault


This study presents a model of income evolution from which dynamic versions of commonly used static poverty measures are derived. The dynamic indexes are calculated both for finite- and infinite-size economic systems. Probabilistic convergence results prove that the infinite-size system can be conveniently used to approximate the finite-size system in an effective way. Secondly, poverty indexes estimation based on micro-data are discussed under different sampling schemes and it is proved that they are strongly consistent. A hypothetical example is used to show the dynamic evolution of the poverty and the estimation methodologies.

Keywords and phrases.

Markov process Population dynamic Nonparametric estimation Micro-data 

AMS (2000) subject classification.

Primary 60J25 Secondary 91B82 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Annoni, P., Bruggemann, R. and Carlsen, L. (2015). A multidimensional view on poverty in the European Union by partial order theory. J. Appl. Stat. 42, 3, 535–554.MathSciNetCrossRefGoogle Scholar
  2. Arenbaev, N.K. (1976). Asymptotic behavior of the multinomial distribution. Theor. Veroyatn. Primen. 21, 805–810.MathSciNetzbMATHGoogle Scholar
  3. Bane, M.J. and Ellwood, D.T. (1986). Slipping into and out of poverty: the dynamics of spells. J. Human Resources 21, 1–23.CrossRefGoogle Scholar
  4. Bladt, M. and Sørensen, M. (2005). Statistical inference for discretely observed Markov jump processes. J. Roy. Statist. Soc. B67, 395–410.MathSciNetCrossRefGoogle Scholar
  5. Breen, R. and Moisio, P. (2004). Poverty dynamics corrected for measurement error. J. Econ. Inequality 2, 171–191.CrossRefGoogle Scholar
  6. Cappellari, L. and Jenkins, S.P. (2004). Modelling low income transitions. J. Appl. Econom. 19, 5, 593–610.CrossRefGoogle Scholar
  7. Chiquet, J. and Limnios, N. (2006). Estimating stochastic dynamical systems driven by a continuous-time jump Markov process. Methodol. Comput. Appl. Probab. 8, 431–447.MathSciNetCrossRefGoogle Scholar
  8. Crommelin, D. and Vanden-Eijnden, E. (2009). Data-based inference of generators for Markov Jump processes using convex optimization. Multiscale Model Simul. 7, 1751–1778.MathSciNetCrossRefGoogle Scholar
  9. Culver, W.J. (1966). On the existence and uniqueness of the real logarithm of a matrix. Proc. Am. Math. Soc. 17, 1146–1151.MathSciNetCrossRefGoogle Scholar
  10. D’Amico, G., Di Biase, G. and Manca, R. (2012). Income inequality dynamic measurement of Markov models: application to some European countries. Econom. Modelling 29, 1598–1602.CrossRefGoogle Scholar
  11. D’Amico, G., Di Biase, G. and Manca, R. (2014). Decomposition of the population dynamic theil’s entropy and its application to four european countries. Hitotsubashi J. Econom. 55, 2, 229–239.Google Scholar
  12. Duncan, G.J., Gustafsson, B., Hauser, R., Schmaus, G., Messinger, H., Muffels, R.J.A., Nolan, B. and Ray, J.-C. (1993). Poverty dynamics in eight countries. J. Popul. Econom. 6, 215–234.CrossRefGoogle Scholar
  13. Formby, J.P., Smith, J.W. and Zheng, B. (2004). Mobility measurement, transition matrices and statistical inference. J. Econ. 120, 181–205.MathSciNetCrossRefGoogle Scholar
  14. Gini, C. (1912). Variabilitá E Mutabilitá. Contributo Allo Studio Delle Distribuzioni E Delle Relazioni Statistiche. C. Cuppini, Bologna.Google Scholar
  15. Karr, A.E. (1991). Point Processes and Their Statistical Inference, 2nd edn. CRC Press, Boca Raton.zbMATHGoogle Scholar
  16. Langeheine, R. and van de Pol, F. (1990). A unifying framework for Markov modelling in discrete space and discrete time. Sociological Methods Res. 18, 416–441.CrossRefGoogle Scholar
  17. Lee, N., Ridder, G. and Strauss, J. (2017). Estimation of poverty transition matrices with noisy data. J. Appl. Econom. 32, 1, 37–55.MathSciNetCrossRefGoogle Scholar
  18. McCall, J.J. (1971). A Markovian model of income dynamics. J. Am. Stat. Assoc. 66, 335, 439–447.CrossRefGoogle Scholar
  19. McClean, S.I. (1980). A semi-Markov model for a multigrade population with Poisson recruitment. J. Appl. Probab. 17, 846–852.MathSciNetCrossRefGoogle Scholar
  20. McDonald, D.R. (1980). On the poisson approximation to the multinomial distribution. Can. J. Stat. 8, 1, 115–118.MathSciNetCrossRefGoogle Scholar
  21. Osberg, L. and Xu, K. (1999). Poverty intensity: how well do canadian provinces compare?. Can. Public Policy 25, 2, 179–195.CrossRefGoogle Scholar
  22. Quah, D. (1996). Empiric for economic growth and convergence. Eur. Econom. Rev. 40, 951–958.CrossRefGoogle Scholar
  23. Regnault, P. (2012). Entropy estimation of M/M/1 queueing systems. In Bayesian Inference and Maximum Entropy Methods in Science and Engineering, AIP Conference Proceedings. P. Goyal, A. Giffin, K.H. Knuth, E. Vrscay, (eds.). American Institute of Physics, Melville vol. 1443, pp. 330–337.Google Scholar
  24. Regnault, P. (2014). Confidence intervals for dynamic Theil’s entropy of economic systems modeled by birth-death processes. In New Perspectives on Stochastic Modeling and Data Analysis. J. Bozeman, V. Girardin, C.H. Skiadas, (eds.). ISAST, Athens.Google Scholar
  25. Sen, A. (1976). Poverty: an ordinal approach to measurement. Econometrica 44, 2, 219–231.MathSciNetCrossRefGoogle Scholar
  26. Shorrocks, A.F. (1995). Revisiting the sen poverty index. Econometrica 63, 5, 1225–1230.CrossRefGoogle Scholar
  27. Takayama, N. (1979). Poverty, income inequality, and their measures: Professor Sen’s axiomatic approach reconsidered. Econometrica 47, 3, 747–759.MathSciNetCrossRefGoogle Scholar
  28. Vassiliou, P.-C.G. and Papadopoulou, A. (1992). Non-homogeneous semi-Markov systems and maintainability of the state sizes. J. Appl. Probab. 29, 519–534.MathSciNetCrossRefGoogle Scholar
  29. Whelan, C.T., Layte, R., Maître, B. and Nolan, B. (2000). Poverty dynamics: an analysis of the 1994 and 1995 waves of the European community household panel. Eur. Societies 2, 4, 505–531.CrossRefGoogle Scholar

Copyright information

© Indian Statistical Institute 2018

Authors and Affiliations

  1. 1.Dipartimento di FarmaciaUniversitá “G. D’Annunzio”ChietiItaly
  2. 2.Laboratoire de Mathématiques de Reims, EA4535Université de Reims Champagne-ArdenneReimsFrance

Personalised recommendations