Advertisement

Phosphoinositide-specific phospholipase C signalling mediates expression of two phenylalanine ammonia lyase genes induced by salicylic acid in Capsicum chinense cells

  • Beatriz A. Rodas-JuncoEmail author
  • Víctor González-Mendoza
  • Armando Muñoz-Sánchez
  • Wilbert Poot-Poot
  • Felipe Vázquez-Flota
  • S. M. Teresa Hernández-Sotomayor
Short Communication
  • 12 Downloads

Abstract

The role of salicylic acid (SA) in the plant stress response is mediated by phenylalanine ammonia lyase (PAL), a key enzyme in the phenylpropanoid pathway in Capsicum chinense cells. However, the relationship between PAL expression in response to SA and the precise involvement of the phosphoinositide-phospholipase C (PI-PLC) transduction pathway linking these effects remains unclear. A pharmacological approach was used to investigate the role of the PI-PLC pathway in the transcriptional regulation of two different PAL gene members in C. chinense suspension cells exposed to SA. Two putative C. chinense PAL genes (CchPAL1 and CchPAL5) were identified after clustering as an independent group in a phylogenetic tree built with 67 Solanaceae genes, corresponding to six species. The expression of CchPAL1 and CchPAL5 showed differential patterns in C. chinense cells exposed to salicylic acid. Moreover, PLC inhibitors, such as neomycin and U73122, differentially modified the expression profiles. These findings suggest that the PI-PLC pathway participates in the activation of preferred PAL genes in response to SA in Capsicum cells.

Keywords

Capsicum Phenylalanine ammonia lyase Phospholipase C Salicylic acid 

Abbreviations

DAG

Diacylglycerol

IP3

Inositol 1,4,5-trisphosphate

Neo

Neomycin

PIP

Phosphatidylinositol 4-phosphate

PIP2

Phosphatidylinositol 4,5-bisphosphate

PI-PLC

Phosphoinositide-phospholipase C

PAL

Phenylalanine ammonia lyase

SA

Salicylic acid

Notes

Acknowledgements

BAR-J holds a chair from the National Council for Science and Technology (CONACYT, Mexico). Supported by CONACYT: Grant (219893) to SMTH-S and a postdoctoral fellowship to VMGM (166897). Part of this work was conducted by SMTH-S in Centre for Research and Assistance in Technology and Design of the State of Jalisco (CIATEJ) during a sabbatical leave.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Altúzar-Molina AR et al (2011) Phospholipidic signaling and vanillin production in response to salicylic acid and methyl jasmonate in Capsicum chinense. Plant Physiol Biochem 49:151–158.  https://doi.org/10.1016/j.plaphy.2010.11.005 CrossRefPubMedGoogle Scholar
  2. Chen JY et al (2006) Effect of salicylic acid on phenylpropanoids and phenylalanine ammonia-lyase in harvested grape berries. Postharvest Biol Technol 40:64–72.  https://doi.org/10.1016/j.postharvbio.2005.12.017 CrossRefGoogle Scholar
  3. Guo J, Wang M (2010) Ultraviolet A-specific induction of anthocyanin biosynthesis and PAL expression in tomato (Solanum lycopersicum L.). Plant Growth Regul 1:1–8CrossRefGoogle Scholar
  4. Gutiérrez-Carbajal MG, Monforte-González M, Miranda-Ham ML, Godoy-Hernández G, Vázquez-Flota F (2010) Induction of capsaicinoid synthesis in Capsicum chinense cell cultures by salicylic acid or methyl jasmonate. Biol Plant 54:430–434CrossRefGoogle Scholar
  5. Kim DS, Hwang BK (2014) An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signaling of the defence response to microbial pathogens. J Exp Bot 65:2295–2306.  https://doi.org/10.1093/jxb/eru109 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Rodas-Junco BA, Cab-Guillén Y, Muñoz-Sánchez JA, Vázquez-Flota F, Hernández Sotomayor SMT (2013) Salicylic acid induces vanillin synthesis through the phospholipid signaling pathway in Capsicum chinense cell cultures. Plant Signal Behav 8(10):e26752.  https://doi.org/10.4161/psb.26752 CrossRefPubMedCentralGoogle Scholar
  7. Rodas-Junco BA, Muñoz-Sánchez JA, Vázquez-Flota F, Hernández-Sotomayor SMT (2015) Salicylic-acid elicited phospholipase D responses in Capsicum chinense cell cultures. Plant Physiol Biochem 90:32–37.  https://doi.org/10.1016/j.plaphy.2015.02.022 CrossRefPubMedGoogle Scholar
  8. Ruelland E et al (2014) Salicylic acid modulates levels of phosphoinositide dependent phospholipase C substrates and products to remodel the Arabidopsis suspension cell transcriptome. Front Plant Sci 5:608.  https://doi.org/10.3389/fpls.2014.00608 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729CrossRefGoogle Scholar
  10. Zhang ZX et al (2016) Discovery of putative capsaicin biosynthetic genes by RNA-Seq and digital gene expression analysis of pepper. Nat Sci Rep 6:34121.  https://doi.org/10.1038/srep34121 CrossRefGoogle Scholar

Copyright information

© Society for Plant Biochemistry and Biotechnology 2019

Authors and Affiliations

  • Beatriz A. Rodas-Junco
    • 1
    • 2
    Email author
  • Víctor González-Mendoza
    • 1
  • Armando Muñoz-Sánchez
    • 1
  • Wilbert Poot-Poot
    • 3
  • Felipe Vázquez-Flota
    • 1
  • S. M. Teresa Hernández-Sotomayor
    • 1
  1. 1.Unidad de Bioquímica y Biología Molecular de PlantasCentro de Investigación Científica de Yucatán (CICY)MéridaMexico
  2. 2.CONACYT– Facultad de Ingeniería Química, Campus de Ciencias Exactas e IngenieríasUniversidad Autónoma de YucatánMéridaMexico
  3. 3.Laboratorio de Biotecnología, Facultad de Ingeniería y CienciasUniversidad Autónoma de Tamaulipas, Centro Universitario VictoriaCiudad VictoriaMexico

Personalised recommendations