Advertisement

Genome-wide identification and characterization of the aquaporin gene family in Medicago truncatula

  • Xueyang Min
  • Honglin Wu
  • Zhengshe Zhang
  • Xingyi Wei
  • Xiaoyu Jin
  • Boniface Ndayambaza
  • Yanrong Wang
  • Wenxian Liu
Original Article
  • 52 Downloads

Abstract

Aquaporins (AQPs), or major intrinsic proteins (MIPs), constitute a large and diverse family of protein channel transporter in plants. However, the information about AQPs family is still poorly understood in the model legume species Medicago truncatula. Here, 46 AQPs were identified and characterized. Based on the phylogenetic analysis, these genes were assigned to five subfamilies, specifically as 10 plasma membrane intrinsic proteins, 12 tonoplast intrinsic proteins, 18 NOD26-like intrinsic proteins, 4 small basic intrinsic proteins and 2 uncharacterized intrinsic proteins. The essential information of AQPs, such as subcellular localization, gene structure, chromosomal localization, evolutionary stress and functional residues were systematically analyzed. In addition, in silico analysis of the gene expression profiles showed certain of tissue specificity and responsiveness to drought/salt stresses in some AQPs genes. The qRT-PCR results showed that MtPIP1;5 and MtTIP1;3 were significantly up-regulated under both drought and salinity stress conditions, indicated their important roles in response to abiotic stresses. The results could provide valuable information for the further functional analysis of the AQPs in M. truncatula and related legume species.

Keywords

Aquaporins Medicago truncatula Phylogenesis Conserved residues Gene expression patterns Abiotic stresses 

Abbreviations

AQPs

Aquaporins

PIPs

Plasma membrane intrinsic proteins

TIPs

Tonoplast intrinsic proteins

NIPs

NOD26-like intrinsic proteins

SIPs

Small basic intrinsic proteins

XIPs

Uncharacterized intrinsic proteins

WGD

Whole-genome duplication

GRAVY

Grand average of hydropathicity

Ar/R

Aromatic/arginine

TM

Transmembrane

Notes

Acknowledgements

This research was supported by the Program for Changjiang Scholars and Innovative ResearchTeam in University (IRT_17R50), and the National Natural Science Foundation of China (31502000).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13562_2018_484_MOESM1_ESM.docx (67 kb)
Supplementary material 1 (DOCX 66 kb)
13562_2018_484_MOESM2_ESM.docx (16 kb)
Supplementary material 2 (DOCX 15 kb)
13562_2018_484_MOESM3_ESM.docx (17 kb)
Supplementary material 3 (DOCX 17 kb)
13562_2018_484_MOESM4_ESM.xlsx (15 kb)
Supplementary material 4 (XLSX 15 kb)
13562_2018_484_MOESM5_ESM.xlsx (29 kb)
Supplementary material 5 (XLSX 29 kb)
13562_2018_484_MOESM6_ESM.xlsx (10 kb)
Supplementary material 6 (XLSX 9 kb)
13562_2018_484_MOESM7_ESM.xlsx (13 kb)
Supplementary material 7 (XLSX 12 kb)
13562_2018_484_MOESM8_ESM.xlsx (19 kb)
Supplementary material 8 (XLSX 19 kb)
13562_2018_484_MOESM9_ESM.xlsx (34 kb)
Supplementary material 9 (XLSX 33 kb)

References

  1. Ariani A, Gepts P (2015) Genome-wide identification and characterization of aquaporin gene family in common bean (Phaseolus vulgaris L.). Mol Genet Genomics 290:1771–1785.  https://doi.org/10.1007/s00438-015-1038-2 CrossRefPubMedGoogle Scholar
  2. Bansal A, Sankararamakrishnan R (2007) Homology modeling of major intrinsic proteins in rice, maize and Arabidopsis: comparative analysis of transmembrane helix association and aromatic/arginine selectivity filters. BMC Struct Biol 7:27.  https://doi.org/10.1186/1472-6807-7-27 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Benedito VA et al (2008) A gene expression atlas of the model legume Medicago truncatula. Plant J 55:504–513.  https://doi.org/10.1111/j.1365-313X.2008.03519.x CrossRefPubMedGoogle Scholar
  4. Bienert GP, Thorsen M, Schussler MD, Nilsson HR, Wagner A, Tamas MJ, Jahn TP (2008) A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biol 6:26.  https://doi.org/10.1186/1741-7007-6-26 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bull PC, Cox DW (1994) Wilson disease and Menkes disease: new handles on heavy-metal transport. Trends Genet 10:246–252CrossRefGoogle Scholar
  6. Danielson JA, Johanson U (2008) Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens. BMC Plant Biol 8:45.  https://doi.org/10.1186/1471-2229-8-45 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Deokar AA, Tar’an B (2016) Genome-wide analysis of the aquaporin gene family in chickpea (Cicer arietinum L.). Front Plant Sci 7:1802.  https://doi.org/10.3389/fpls.2016.01802 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Deshmukh R, Bélanger RR (2016) Molecular evolution of aquaporins and silicon influx in plants. Funct Ecol 30:1277–1285.  https://doi.org/10.1111/1365-2435.12570 CrossRefGoogle Scholar
  9. Deshmukh RK, Vivancos J, Guérin V, Sonah H, Labbé C, Belzile F, Bélanger RR (2013) Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice. Plant Mol Biol 83:303–315.  https://doi.org/10.1007/s11103-013-0087-3 CrossRefPubMedGoogle Scholar
  10. Deshmukh RK et al (2015) A precise spacing between NPA domains of aquaporins is essential for silicon permeability in plants. Plant J 83:489–500.  https://doi.org/10.1111/tpj.12904 CrossRefPubMedGoogle Scholar
  11. Froger A, Tallur B, Thomas D, Delamarche C (1998) Prediction of functional residues in water channels and related proteins. Protein Sci 7:1458–1468.  https://doi.org/10.1002/pro.5560070623 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Galmés J, Pou A, Alsina MM, Tomàs M, Medrano H, Flexas J (2007) Aquaporin expression in response to different water stress intensities and recovery in Richter-110 (Vitis sp.): relationship with ecophysiological status. Planta 226:671–681.  https://doi.org/10.1007/s00425-007-0515-1 CrossRefPubMedGoogle Scholar
  13. Gao Y-P, Young L, Bonham-Smith P, Gusta LV (1999) Characterization and expression of plasma and tonoplast membrane aquaporins in primed seed of Brassica napus during germination under stress conditions. Plant Mol Biol 40:635–644.  https://doi.org/10.1023/A:1006212216876 CrossRefPubMedGoogle Scholar
  14. Gao Z et al (2010) Overexpressing a putative aquaporin gene from wheat, TaNIP, enhances salt tolerance in transgenic Arabidopsis. Plant Cell Physiol 51:767–775.  https://doi.org/10.1093/pcp/pcq036 CrossRefPubMedGoogle Scholar
  15. Guenther JF, Chanmanivone N, Galetovic MP, Wallace IS, Cobb JA, Roberts DM (2003) Phosphorylation of soybean nodulin 26 on serine 262 enhances water permeability and is regulated developmentally and by osmotic signals. Plant Cell 15:981–991.  https://doi.org/10.1105/tpc.009787 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gupta AB, Sankararamakrishnan R (2009) Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: characterization of XIP subfamily of aquaporins from evolutionary perspective. BMC Plant Biol 9:134.  https://doi.org/10.1186/1471-2229-9-134 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hanaoka H, Uraguchi S, Takano J, Tanaka M, Fujiwara T (2014) OsNIP3;1, a rice boric acid channel, regulates boron distribution and is essential for growth under boron-deficient conditions. Plant J 78:890–902.  https://doi.org/10.1111/tpj.12511 CrossRefPubMedGoogle Scholar
  18. Hove RM, Bhave M (2011) Plant aquaporins with non-aqua functions: deciphering the signature sequences. Plant Mol Biol 75:413–430.  https://doi.org/10.1007/s11103-011-9737-5 CrossRefPubMedGoogle Scholar
  19. Hu W et al (2012) Overexpression of a wheat aquaporin gene, TaAQP8, enhances salt stress tolerance in transgenic tobacco. Plant Cell Physiol 53:2127–2141.  https://doi.org/10.1093/pcp/pcs154 CrossRefPubMedGoogle Scholar
  20. Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296CrossRefGoogle Scholar
  21. Jang JY, Lee SH, Rhee JY, Chung GC, Ahn SJ, Kang H (2007) Transgenic Arabidopsis and tobacco plants overexpressing an aquaporin respond differently to various abiotic stresses. Plant Mol Biol 64:621–632.  https://doi.org/10.1007/s11103-007-9181-8 CrossRefPubMedGoogle Scholar
  22. Johanson U et al (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358–1369CrossRefGoogle Scholar
  23. Johansson I, Karlsson M, Johanson U, Larsson C, Kjellbom P (2000) The role of aquaporins in cellular and whole plant water balance. BBA Biomembr 1465:324–342CrossRefGoogle Scholar
  24. Khan K, Agarwal P, Shanware A, Sane VA (2015) Heterologous expression of two jatropha aquaporins Imparts drought and salt tolerance and improves seed viability in transgenic Arabidopsis thaliana. PLoS ONE 10:e0128866.  https://doi.org/10.1371/journal.pone.0128866 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefPubMedGoogle Scholar
  26. Kuochen C, Shen HB (2010) Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS ONE 5:e11335.  https://doi.org/10.1371/journal.pone.0011335 CrossRefGoogle Scholar
  27. Lescot M et al (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327.  https://doi.org/10.1093/nar/30.1.325 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Letunic I, Doerks T, Bork P (2015) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res 43:257–260.  https://doi.org/10.1093/nar/gku949 CrossRefGoogle Scholar
  29. Liu LH, Ludewig U, Gassert B, Frommer WB, von Wiren N (2003) Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis. Plant Physiol 133:1220–1228.  https://doi.org/10.1104/pp.103.027409 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Marchlerbauer A et al (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43:D222.  https://doi.org/10.1093/nar/gku1221 CrossRefGoogle Scholar
  31. Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624.  https://doi.org/10.1146/annurev.arplant.59.032607.092734 CrossRefPubMedGoogle Scholar
  32. Maurel C, Boursiac Y, Luu DT, Santoni V, Shahzad Z, Verdoucq L (2015) Aquaporins in plants. Physiol Rev 95:1321–1358.  https://doi.org/10.1152/physrev.00008.2015 CrossRefPubMedGoogle Scholar
  33. Meinhart A, Alonso JC, Strater N, Saenger W (2003) Crystal structure of the plasmid maintenance system epsilon/zeta: functional mechanism of toxin zeta and inactivation by epsilon 2 zeta 2 complex formation. Proc Natl Acad Sci USA 100:1661–1666.  https://doi.org/10.1073/pnas.0434325100 CrossRefPubMedGoogle Scholar
  34. Noronha H et al (2016) The grapevine uncharacterized intrinsic protein 1 (VvXIP1) is regulated by drought stress and transports glycerol, hydrogen peroxide, heavy metals but not water. PLoS ONE 11:e0160976.  https://doi.org/10.1371/journal.pone.0160976 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Reuscher S, Akiyama M, Mori C, Aoki K, Shibata D, Shiratake K (2013) Genome-wide identification and expression analysis of aquaporins in tomato. PLoS ONE 8:e79052.  https://doi.org/10.1371/journal.pone.0079052 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Rodrigues MI, Bravo JP, Sassaki FT, Severino FE, Maia IG (2013) The tonoplast intrinsic aquaporin (TIP) subfamily of Eucalyptus grandis: characterization of EgTIP2, a root-specific and osmotic stress-responsive gene. Plant Sci 213:106–113.  https://doi.org/10.1016/j.plantsci.2013.09.005 CrossRefPubMedGoogle Scholar
  37. Roth C, Rastogi S, Arvestad L, Dittmar K, Light S, Ekman D, Liberles DA (2007) Evolution after gene duplication: models, mechanisms, sequences, systems, and organisms. J Exp Zool 308B:58–73.  https://doi.org/10.1002/jez.b.21124 CrossRefGoogle Scholar
  38. Sade N, Gebretsadik M, Seligmann R, Schwartz A, Wallach R, Moshelion M (2010) The role of tobacco aquaporin1 in improving water use efficiency, hydraulic conductivity, and yield production under salt stress. Plant Physiol 152:245–254.  https://doi.org/10.1104/pp.109.145854 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Sonah H, Deshmukh RK, Labbé C, Bélanger RR (2017) Analysis of aquaporins in Brassicaceae species reveals high-level of conservation and dynamic role against biotic and abiotic stress in canola. Sci Rep 7:2771.  https://doi.org/10.1038/s41598-017-02877-9 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Sui H, Han B-G, Lee JK, Walian P, Jap BK (2001) Structural basis of water-specific transport through the AQP1 water channel. Nature 414:872–878.  https://doi.org/10.1038/414872a CrossRefPubMedGoogle Scholar
  41. Suyama M, Torrents D, Bork P (2006) PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res 34:609–612.  https://doi.org/10.1093/nar/gkl315 CrossRefGoogle Scholar
  42. Takano J, Wada M, Ludewig U, Schaaf G, von Wiren N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18:1498–1509.  https://doi.org/10.1105/tpc.106.041640 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Takase T, Ishikawa H, Murakami H, Kikuchi J, Sato-Nara K, Suzuki H (2011) The circadian clock modulates water dynamics and aquaporin expression in Arabidopsis roots. Plant Cell Physiol 52:373–383.  https://doi.org/10.1093/pcp/pcq198 CrossRefPubMedGoogle Scholar
  44. Tanaka M, Wallace IS, Takano J, Roberts DM, Fujiwara T (2008) NIP6;1 is a boric acid channel for preferential transport of boron to growing shoot tissues in Arabidopsis. Plant Cell 20:2860–2875.  https://doi.org/10.1105/tpc.108.058628 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH (2008) Synteny and collinearity in plant genomes. Science 320:486–488.  https://doi.org/10.1126/science.1153917 CrossRefPubMedGoogle Scholar
  46. Tornroth-Horsefield S et al (2006) Structural mechanism of plant aquaporin gating. Nature 439:688–694.  https://doi.org/10.1038/nature04316 CrossRefPubMedGoogle Scholar
  47. Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R (2003) The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425:734–737CrossRefGoogle Scholar
  48. Veselova TV, Veselovskii VA, Usmanov PD, Usmanova OV, Kozar VI (2003) Hypoxia and imbibition injuries to aging seeds. Russ J Plant Physiol 50:835–842.  https://doi.org/10.1023/B:RUPP.0000003283.24523.82 CrossRefGoogle Scholar
  49. Willigen CV, Postaire O, Tournaireroux C, Boursiac Y, Maurel C (2006) Expression and inhibition of aquaporins in germinating Arabidopsis seeds. Plant Cell Physiol 47:1241–1250.  https://doi.org/10.1093/pcp/pcj094 CrossRefGoogle Scholar
  50. Xin S, Yu G, Sun L, Qiang X, Xu N, Cheng X (2014) Expression of tomato SlTIP2;2 enhances the tolerance to salt stress in the transgenic Arabidopsis and interacts with target proteins. J Plant Res 127:695–708.  https://doi.org/10.1007/s10265-014-0658-7 CrossRefPubMedGoogle Scholar
  51. Young ND et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480:520–524.  https://doi.org/10.1038/nature10625 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Zhang DY et al (2013) Genome-wide sequence characterization and expression analysis of major intrinsic proteins in soybean (Glycine max L.). PLoS ONE 8:e56312.  https://doi.org/10.1371/journal.pone.0056312 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Zhou S et al (2012) Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco. PLoS ONE 7:e52439.  https://doi.org/10.1371/journal.pone.0052439 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Zhu Y, Wu N, Song W, Yin G, Qin Y, Yan Y, Hu Y (2014) Soybean (Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies. BMC Plant Biol 14:1–19.  https://doi.org/10.1186/1471-2229-14-93 CrossRefGoogle Scholar
  55. Zou Z, Gong J, An F, Xie G, Wang J, Mo Y, Yang L (2015a) Genome-wide identification of rubber tree (Hevea brasiliensis Muell. Arg.) aquaporin genes and their response to ethephon stimulation in the laticifer, a rubber-producing tissue. BMC Genomics 16:1–18.  https://doi.org/10.1186/s12864-015-2152-6 CrossRefGoogle Scholar
  56. Zou Z, Gong J, Huang Q, Mo Y, Yang L, Xie G (2015b) Gene structures, evolution, classification and expression profiles of the aquaporin gene family in castor bean (Ricinus communis L.). PLoS ONE 10:e0141022.  https://doi.org/10.1371/journal.pone.0141022 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Zou Z et al (2016) Genome-Wide identification of Jatropha curcas aquaporin genes and the comparative analysis provides insights into the gene family expansion and evolution in Hevea brasiliensis. Front Plant Sci 7:395.  https://doi.org/10.3389/fpls.2016.00395 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Society for Plant Biochemistry and Biotechnology 2019

Authors and Affiliations

  • Xueyang Min
    • 1
  • Honglin Wu
    • 1
  • Zhengshe Zhang
    • 1
  • Xingyi Wei
    • 1
  • Xiaoyu Jin
    • 1
  • Boniface Ndayambaza
    • 1
  • Yanrong Wang
    • 1
  • Wenxian Liu
    • 1
  1. 1.State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouPeople’s Republic of China

Personalised recommendations