Brazilian Journal of Physics

, Volume 49, Issue 6, pp 829–835 | Cite as

Synthesis of Magnetite Nanoparticles of Different Size and Shape by Interplay of Two Different Surfactants

  • Vinícius Mariani Lenart
  • Rozane de Fátima Turchiello
  • Maria Pilar Calatayud
  • Gerardo Fabián Goya
  • Sergio Leonardo GómezEmail author
Condensed Matter


Given the central role that nanoparticle size and shape play in many fundamental applications for designing functional materials, fine control of the synthesis has been intensively pursued. A simple one-step method for obtaining monodisperse nanoparticles over a large size range with shape control has not yet been reported. Here, we propose a simple method to control the morphology of magnetite nanoparticles by regulating the amount of non-selective binding surfactant by simply altering the ratio of oleylamine and fatty acid. With this approach, we were able to synthesize magnetite nanoparticles with sizes ranging between 6 ± 1 and 176 ± 20 nm and to select between more rounded or faceted shapes.


Nanoparticle Magnetite Thermal decomposition 



The authors thank the financial support from MINECO (Spain, project MAT2010-19236), INCT-FCx, and the Brazilian agencies CNPq, CAPES, FAPESP, and Fundação Araucária. V.M. Lenart also acknowledges fellowship from CAPES (Proc. n° 2263-13-0).

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    N. Tran, T.J. Webster, Magnetic nanoparticles: biomedical applications and challenges. J. Mater. Chem. 20, 8760–8767 (2010)CrossRefGoogle Scholar
  2. 2.
    J. Nam, N. Won, J. Bang, H. Jin, J. Park, S. Jung, S. Jung, Y. Park, S. Kim, Surface engineering of inorganic nanoparticles for imaging and therapy. Adv. Drug Deliv. Rev. 65, 622–648 (2013)CrossRefGoogle Scholar
  3. 3.
    J. Park, J. Joo, G.K. Soon, Y. Jang, T. Hyeon, Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed. 46, 4630–4660 (2007)CrossRefGoogle Scholar
  4. 4.
    S.G. Kwon, T. Hyeon, Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. Small 7, 2685–2702 (2011)CrossRefGoogle Scholar
  5. 5.
    A. Albanese, P.S. Tang, W.C. Chan, The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 14, 1–16 (2012)CrossRefGoogle Scholar
  6. 6.
    I.A. Wani, T. Ahmad, Size and shape dependant antifungal activity of gold nanoparticles: a case study of candida. Colloid. Surface. B 101, 162–170 (2013)CrossRefGoogle Scholar
  7. 7.
    J. Baumgartner, A. Dey, P.H.H. Bomans, C. Le Coadou, P. Fratzl, N.A.J.M. Sommerdijk, D. Faivre, Nucleation and growth of magnetite from solution. Nat. Mater. 12, 310–314 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Z. Wu, S. Yang, W. Wu, Shape control of inorganic nanoparticles from solution. Nanoscale 8, 1237–1259 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108, 2064–2110 (2008)CrossRefGoogle Scholar
  10. 10.
    E.H. Kim, H.S. Lee, B.K. Kwak, B.K. Kim, Synthesis of ferrouid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J. Magn. Magn. Mater. 289, 328–330 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Lee, J. Lee, C.J. Bae, J.G. Park, H.J. Noh, J.H. Park, T. Hyeon, Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions. Adv. Funct. Mater. 15, 503–509 (2005)CrossRefGoogle Scholar
  12. 12.
    R. Strobel, S.E. Pratsinis, Direct synthesis of maghemite, magnetite and wustite nanoparticles by flame spray pyrolysis. Adv. Powder Technol. 20, 190–194 (2009)CrossRefGoogle Scholar
  13. 13.
    L. Cabrera, S. Gutierrez, N. Menendez, M.P. Morales, P. Herrasti, Magnetite nanoparticles: electrochemical synthesis and characterization. Electrochim. Acta 53, 3436–3441 (2008)CrossRefGoogle Scholar
  14. 14.
    I. Nyiro-Kósa, D.C. Nagy, M. Pósfai, Size and shape control of precipitated magnetite nanoparticles. Eur. J. Mineral. 21(293–302) (2009)Google Scholar
  15. 15.
    K. Parvin, J. Ma, J. Ly, X.C. Sun, D.E. Nikles, K. Sun, L.M. Wang, Synthesis and magnetic properties of monodisperse Fe3O4 nanoparticles. J. Appl. Phys. 95, 7121–7123 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    W. W. Yu, J. C. Falkner, C. T. Yavuz, V. L. Colvin, Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts, Chem. Commun. 2306-2307 (2004)Google Scholar
  17. 17.
    H.-G. Liao, D. Zherebetskyy, H. Xin, C. Czarnik, P. Ercius, H. Elmlund, M. Pan, L.-W. Wang, H. Zheng, Facet development during platinum nanocube growth. Science 345, 916–919 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    W. Wu, Z. Wu, T. Yu, C. Jiang, W.S. Kim, Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 16, 023501 (2015)CrossRefGoogle Scholar
  19. 19.
    T.-D. Nguyen, T.-O. Do, Solvo-hydrothermal approach for the shape-selective synthesis of vanadium oxide nanocrystals and their characterization. Langmuir 25, 5322–5332 (2009)CrossRefGoogle Scholar
  20. 20.
    S. Sun, H. Zeng, Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 124, 8204–8205 (2002)CrossRefGoogle Scholar
  21. 21.
    S. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, S.X. Wang, G. Li, Monodisperse MFe2O4 (M= Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 126, 273–279 (2004)CrossRefGoogle Scholar
  22. 22.
    L. Zhang, Q. Li, S. Liu, M. Ang, M.O. Tade, H.-C. Gu, Synthesis of pyramidal, cubical and truncated octahedral magnetite nanocrystals by controlling reaction heating rate. Adv. Powder Technol. 22, 532–536 (2011)CrossRefGoogle Scholar
  23. 23.
    W. Yu, T. Zhang, J. Zhang, X. Qiao, L. Yang, Y. Liu, The synthesis of octahedral nanoparticles of magnetite. Mater. Lett. 60, 2998–3001 (2006)CrossRefGoogle Scholar
  24. 24.
    X.-L. Cheng, J.-S. Jiang, D.-M. Jiang, Z.-J. Zhao, Synthesis of rhombic dodecahedral Fe3O4 nanocrystals with exposed high-energy 110 facets and their peroxidase-like activity and lithium storage properties. J. Phys. Chem. C 118, 12588–12598 (2014)CrossRefGoogle Scholar
  25. 25.
    W. Bu, Z. Chen, F. Chen, J. Shi, Oleic acid/oleylamine cooperative-controlled crystallization mechanism for monodisperse tetragonal bipyramid NaLa(MoO4)2 nanocrystals. J. Phys. Chem. C 113, 12176–12185 (2009)CrossRefGoogle Scholar
  26. 26.
    V.M. Lenart, N.G.C. Astrath, R.F. Turchiello, G.F. Goya, S.L. Gómez, Thermal diffusivity of ferrofluids as a function of particle size determined using the mode-mismatched dual-beam thermal lens technique. J. Appl. Phys. 123, 085107 (2018)ADSCrossRefGoogle Scholar
  27. 27.
    D. Kim, N. Lee, M. Park, B.H. Kim, K. An, T. Hyeon, Synthesis of uniform ferrimagnetic magnetite nanocubes. J. Am. Chem. Soc. 131, 454–455 (2009)CrossRefGoogle Scholar
  28. 28.
    C. Pradip, P. Maltesh, R.A. Somasundaran, S. Kulkarni, Gundiah, Polymer-polymer complexation in dilute aqueous solutions: poly(acrylic acid)-poly(ethylene oxide) and poly(acrylic acid)-poly(vinylpyrrolidone). Langmuir 7, 2108–2111 (1991)CrossRefGoogle Scholar
  29. 29.
    L. Zhang, R. He, H.-C. Gu, Oleic acid coating on the monodisperse magnetite nanoparticles. Appl. Surf. Sci. 253, 2611–2617 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    M. Klokkenburg, J. Hilhorst, B. Erné, Surface analysis of magnetite nanoparticles in cyclohexane solutions of oleic acid and oleylamine. Vib. Spectrosc. 43, 243–248 (2007)CrossRefGoogle Scholar
  31. 31.
    Z. Xu, C. Shen, Y. Hou, H. Gao, S. Sun, Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles. Chem. Mater. 21, 1778–1780 (2009)CrossRefGoogle Scholar
  32. 32.
    S. Mourdikoudis, L.M. Liz-Marzán, Oleylamine in nanoparticle synthesis. Chem. Mater. 25, 1465–1476 (2013)CrossRefGoogle Scholar
  33. 33.
    H. Yang, T. Ogawa, D. Hasegawa, M. Takahashi, Synthesis and magnetic properties of monodisperse magnetite nanocubes. J. Appl. Phys. 103, 07D526 (2008)CrossRefGoogle Scholar
  34. 34.
    A.R. Tao, S. Habas, P. Yang, Shape control of colloidal metal nanocrystals. Small 4, 310–325 (2008)CrossRefGoogle Scholar
  35. 35.
    K. Chen, C. Sun, D. Xue, Morphology engineering of high performance binary oxide electrodes. Phys. Chem. Chem. Phys. 17, 732–750 (2015)CrossRefGoogle Scholar
  36. 36.
    T. Otsuka, Y. Chujo, Preparation and characterization of poly(vinylpyrrolidone)/zirconium oxide hybrids by using inorganic nanocrystals. Polym. J. 40, 1157–1163 (2008)CrossRefGoogle Scholar
  37. 37.
    W. Bragg, The structure of magnetite and the spinels. Nature 95, 561 (1915)ADSCrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2019

Authors and Affiliations

  1. 1.Physics DepartmentFederal University of TechnologyPonta GrossaBrazil
  2. 2.Institute of Nanoscience of AragónUniversity of ZaragozaZaragozaSpain
  3. 3.Physics DepartmentState University of Ponta GrossaPonta GrossaBrazil

Personalised recommendations