Brazilian Journal of Physics

, Volume 49, Issue 6, pp 820–828 | Cite as

Steady Shear Rheology and Magnetic Properties of Flake-Shaped Iron Particle-Based MR Fluid: Before and After Tribology Study

  • Ramesh V. UpadhyayEmail author
Condensed Matter


In this work, rheological properties and magnetic properties of flake-shaped iron particle-based magnetorheological (MR) fluid after tribology study were investigated and compared with that of before tribology study. With this aim, the flow properties of the MR suspensions in a steady shear regime were investigated, using a rotational rheometer with a parallel-plate measuring cell. The magnetic properties were studied using vibrational magnetometer. The rheological study was carried out for a broad range of magnetic fields. The results show that MR effect decreases for the fluid which is exposed to tribology study. The off-state viscosity and magnetization of the system increases. The surface morphology investigated using scanning electron microscopy shows that ball surface was ware and flake-shape particle morphology remains unaltered. The increase in off-state viscosity is attributed to the wear particles from the ball surface, which are of typically submicron sized as well as some particles from flake-shaped iron surface. These particles behave as a lubricant between the flake-shaped particles and reduce the particle-particle friction. As a result, the orientation ordering increases when the field is higher than frictional force. This results in increase in magnetization at higher fields. The oxidation stability of the iron particle is also confirmed form thermo gravimetric analysis of the particle. The present investigation suggests the use of flake-shape particle can avoid in-use thickening of MR fluid.


Magnetorheological fluids Electrolyte iron Rheology Tribology Friction 



The authors would like to thank CHARUSAT for providing financial support.


  1. 1.
    S. Taketomi, R.D. Shull, Experimental verification of interactions between randomly distributed fine magnetic particles. J. Magn. Magn. Mater. 266(1), 207–214 (2003)ADSGoogle Scholar
  2. 2.
    B.D. Chin, J.H. Park, M.H. Kwon, O.O. Park, Rheological properties and dispersion stability of magnetorheological (MR) suspensions. Rheol. Acta 40(3), 211–219 (2001)Google Scholar
  3. 3.
    M.T. López-López, J.D.G. Durán, A.V. Delgado, F. González-Caballero, Stability and magnetic characterization of oleate-covered magnetite ferrofluids in different nonpolar carriers. J. Colloid Interface Sci. 291(1), 144–151 (2005)ADSGoogle Scholar
  4. 4.
    J.M. Ginder, L.C. Davis, L.D. Elie, Int. J. Mod. Phys. B10, 3293 (1996)ADSGoogle Scholar
  5. 5.
    J. D. G Duran. European patent EP 1918944 A2 (2008)Google Scholar
  6. 6.
    G.R. Iglesias, M.T. Lopez-Lopez, J.D.G. Duran, F. González-Caballero, A.V. Delgado, Dynamic characterization of extremely bidisperse magnetorheological fluids. J. Colloid Interface Sci. 377, 153–159 (2012)ADSGoogle Scholar
  7. 7.
    J. de Vicente, D.J. Klingenberg, R. Hidalgo-Alvarez, Magnetorheological fluids: a review. Soft Matter 7(8), 3701 (2011)ADSGoogle Scholar
  8. 8.
    B.J. Park, F.F. Fang, H.J. Choi, Magnetorheology: materials and application. Soft Matter 6(21), 5246 (2010)ADSGoogle Scholar
  9. 9.
    P.P. Phule, Smart Mater. Bull. 2, 7 (2001)Google Scholar
  10. 10.
    Lord information available on
  11. 11.
    J. Wang, G. Meng, Proceedings of the Institution of Mechanical Engineers. Part L: J. Mater. Des. Appl. 215(3), 165 (2001)Google Scholar
  12. 12.
    W.H. Li, H. Du, N.Q. Guo, P.B. Kosasih, Sens. Rev. 24(1), 68–73 (2004)Google Scholar
  13. 13.
    B. Liu, W.H. Li, P.B. Kosasih, X.Z. Zhang, Development of an MR-brake-based haptic device. Smart Mater. Struct. 15(6), 1960–1966 (2006)ADSGoogle Scholar
  14. 14.
    J. Park, G.H. Yoon, J.W. Kang, S.B. Choi, Design and control of a prosthetic leg for above-knee amputees operated in semi-active and active modes. Smart Mater. Struct. 25(8), 085009 (2016)ADSGoogle Scholar
  15. 15.
    H. Herr, A. Wilkenfeld, Int. J. 30(1), 42 (2003)Google Scholar
  16. 16.
    P. Chen, X.X. Bai, L.J. Qian, S.B. Choi, A magneto-rheological fluid mount featuring squeeze mode: analysis and testing. Smart Mater. Struct. 25(5), 055002 (2016)ADSGoogle Scholar
  17. 17.
    X.J. Zhang, A. Farjoud, M. Ahmadian, K.H. Guo, M. Craft, Dynamic testing and modeling of an MR squeeze mount. J. Intell. Mater. Syst. Struct. 22(15), 1717–1728 (2011)Google Scholar
  18. 18.
    S.B. Choi, W. Li, M. Yu, H. Du, J. Fu, P.X. Do, Smart Mater. Struct. 25(4), 043001 (2016)ADSGoogle Scholar
  19. 19.
    S. B. Choi, and Y. M. Han, Magnetorheological fluid technology: applications in vehicle systems. CRC press (2012)Google Scholar
  20. 20.
    A.J. Bombard, M. Knobel, M.R. Alcantara, I. Joekes, Evaluation of magnetorheological suspensions based on carbonyl iron powders. J. Intell. Mater. Syst. Struct. 13(7–8), 471–478 (2002)Google Scholar
  21. 21.
    P.P. Phulé, J.M. Ginder, Int. J. Mod. Phys. B 13(14n16), 2019 (1999)ADSGoogle Scholar
  22. 22.
    M.T. López-López, P. Kuzhir, S. Lacis, G. Bossis, F. González-Caballero, J.D.G. Durán, J. Phys. Condens. Matter 18(38), S2803 (2006)ADSGoogle Scholar
  23. 23.
    F.F. Fang, H.J. Choi, W.S. Choi, Two-layer coating with polymer and carbon nanotube on magnetic carbonyl iron particle and its magnetorheology. Colloid Polym. Sci. 288(3), 359–363 (2010)Google Scholar
  24. 24.
    J. Sutrisno, A. Fuchs, H. Sahin, F. Gordaninejad, Surface coated iron particles via atom transfer radical polymerization for thermal-oxidatively stable high viscosity magnetorheological fluid. J. Appl. Polym. Sci. 128(1), 470–480 (2013)Google Scholar
  25. 25.
    M.T. López-López, J. de Vicente, F. González-Caballero, J.D.G. Durán, Stability of magnetizable colloidal suspensions by addition of oleic acid and silica nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 264(1), 75–81 (2005)Google Scholar
  26. 26.
    W.L. Song, S.B. Choi, An experimental investigation on tribological characteristics of magnetorheological fluids: wear and friction. Adv. Sci. Lett. 13(1), 646–650 (2012)Google Scholar
  27. 27.
    H.X. Li, R.G. Song, Z.G. Ji, Effects of nano-additive TiO2 on performance of micro-arc oxidation coatings formed on 6063 aluminum alloy. Trans. Nonferrous Metals Soc. China 23(2), 406–411 (2013)Google Scholar
  28. 28.
    I.B. Jang, H.B. Kim, J.Y. Lee, J.L. You, H.J. Choi, M.S. Jhon, Role of organic coating on carbonyl iron suspended particles in magnetorheological fluids. J. Appl. Phys. 97(10), 10Q912 (2005)Google Scholar
  29. 29.
    R.C. Bell, J.O. Karli, A.N. Vavreck, D.T. Zimmerman, G.T. Ngatu, N.M. Wereley, Smart Mater. Struct. 17(1), 015028 (2008)ADSGoogle Scholar
  30. 30.
    J. de Vicente, J.P. Segovia-Gutiérrez, E. Andablo-Reyes, F. Vereda, R. Hidalgo-Álvarez, J. Chem. Phys. 131(19), 194902 (2009)ADSGoogle Scholar
  31. 31.
    M.T. López-López, P. Kuzhir, G. Bossis, Magnetorheology of fiber suspensions. I. Experimental. J. Rheol. 53(1), 115–126 (2009)ADSGoogle Scholar
  32. 32.
    R.V. Upadhyay, Z. Laherisheth, K. Shah, Smart Mater. Struct. 23(1), 015002 (2013)ADSGoogle Scholar
  33. 33.
    E. Siebert, Z. Laherisheth, R.V. Upadhyay, Dilution dependent magnetorheological effect of flake-shaped particle suspensions—destructive friction effects. Smart Mater. Struct. 24(7), 075011 (2015)ADSGoogle Scholar
  34. 34.
    K. Shah, S.B. Choi, Rheological properties of magnetorheological polishing fluid featuring plate-like iron particles. Smart Mater. Struct. 23(11), 117003 (2014)ADSGoogle Scholar
  35. 35.
    Z. Laherisheth, R.V. Upadhyay, Smart Mater. Struct.s 26(5), 054008 (2017)ADSGoogle Scholar
  36. 36.
    J.D. Carlson, What makes a good MR fluid? J. Intell. Mater. Syst. Struct. 13(7–8), 431–435 (2002)Google Scholar
  37. 37.
    J.D. Carlson, Int. J. Vehicle Des. 33(1–3), 207 (2003)Google Scholar
  38. 38.
    G.R. Iglesias, L.F. Ruiz-Morón, J.D.G. Durán, A.V. Delgado, Smart Mater. Struct. 24(12), 127001 (2015)ADSGoogle Scholar
  39. 39.
    W.H. Kim, J.H. Park, G.W. Kim, C.S. Shin, S.B. Choi, Durability investigation on torque control of a magneto-rheological brake: experimental work. Smart Mater. Struct. 26(3), 037001 (2017)ADSGoogle Scholar
  40. 40.
    K. Shah, M.S. Seong, R.V. Upadhyay, S.B. Choi, Smart Mater. Struct. 23(2), 027001 (2013)ADSGoogle Scholar
  41. 41.
    D. Wang, B. Zi, Y. Zeng, Y. Hou, Q. Meng, Temperature-dependent material properties of the components of magnetorheological fluids. J. Mater. Sci. 49(24), 8459–8470 (2014)ADSGoogle Scholar
  42. 42.
    D. Jiles. Introduction to Magnetism & Magnetic Materials. Chapman and hall London (1991)Google Scholar
  43. 43.
    Y.D. Liu, H.J. Choi, S.B. Choi, Controllable fabrication of silica encapsulated soft magnetic microspheres with enhanced oxidation-resistance and their rheology under magnetic field. Colloids Surf. A Physicochem. Eng. Asp. 403, 133–138 (2012)Google Scholar
  44. 44.
    H.M. Laun, C. Gabriel, C. Kieburg, Wall material and roughness effects on transmittable shear stresses of magnetorheological fluids in plate–plate magnetorheometry. Rheol. Acta 50(2), 141–157 (2011)Google Scholar
  45. 45.
    M.R. Jolly, J.W. Bender, R.T. Mathers, Indirect measurements of microstructure development in magnetorheological fluids. Int. J. Mod. Phys. B 13(14n16), 2036–2043 (1999)ADSGoogle Scholar
  46. 46.
    X.B. Wang, W.M. Liu, in Encyclopaedia of Tribology. Nanoparticle-based lubricant additives (Springer US, 2013), pp. 2369–2376Google Scholar

Copyright information

© Sociedade Brasileira de Física 2019

Authors and Affiliations

  1. 1.P D Patel Institute of Applied Sciences, K C Patel R & D CenterCharotar University of Science and TechnologyChangaIndia

Personalised recommendations