Conductivity Fluctuation and Some Parameters of High temperature Superconductor Polycrystalline Y1Ba2Cu3O7−δ doped with Silver Nanoparticles

  • Gholamabbas ShamsEmail author
  • Morteza Ranjbar
Condensed Matter


In this study, we report the effect of Ag nanoparticles doping on the dimensional fluctuations of superconducting order parameters, crystal structure, and some parameters of Y1Ba2Cu3O7−δ + × Ag (x = 0.0, 0.06, 0.1, 0.3, and 0.6 wt%) polycrystalline ceramics. By increasing the content of Ag in YBCO matrix, X-ray diffraction (XRD) with the Rietveld refinement technique revealed that the crystal lattice parameters changed and the orthorhombicity decreased slightly. Also, the increase of Ag wt% caused a decrease of superconducting transition temperatures (Tc) which are determined from the standard four-probe method and dropped abruptly. Aslamazov–Larkin (AL) model was used to analyze excess conductivity fluctuation. Lawerence–Doniach (LD) temperature named TLD which is responsible for the dimensional nature of fluctuation inside the grains is influenced by nano-silver combination in the compound. Crossover temperature from 2D to 3D (TLD) decreased in the mean-field region as a resultant dominance of 3D region by increasing of Ag in YBCO matrix. The decrease in zero-resistance critical temperature (Tc zero), zero-temperature coherence length along the c-axis ξc(0), and super layer length d values implies the degradation of inter-grain weak links, more disorder state of samples and unsettling of the mean free path for the charge carriers respectively with addition of silver nanoparticles. The calculations based on AL and LD model showed the highest anisotropy (γ = 1.34681) for the x = 0.6 sample. The size of the Ag ions, being larger compared to Cu ions, and the number of substitution sites affects the coupling between the CuO2 planes and that results in higher anisotropy. Critical magnetic fields Bc1(0), Bc2(0), and critical current density Jc(0) were indirectly calculated from the Ginzburg–Landau (GL) number and GL equations. By increasing the doping level of silver nanoparticle, these parameters were found to be higher in Ag-added YBCO samples compared to the pure Y123, meaning better intrinsic flux pinning properties of doped Y123. The silver nanoparticle inclusion reduces the grain size and increases the strength and hardness of the parent compound.


Conductivity fluctuation YBCO Ag nanoparticle Critical parameters 



The results of this article are obtained from the research plan entitled: “Effect of silver nanoparticles doping on critical current density (Jc) and critical temperature (Tc) of high-temperature YBCO superconductor”. Financial grant was supported by the research center, Shiraz Branch, Islamic Azad University, Shiraz, Iran and Iran Nanotechnology Initiative Council (INIC). The authors are grateful to Dr. Ghaffary, Mr. Fatemi, Mr. Nowroozi, and Mrs. Mallahi from Islamic Azad University-Shiraz branch and Mr. Mahmoodinezhad from the Brandenburg University of Technology, Germany for their help and valuable comments.


  1. 1.
    Z. He, T. Habisreuther, G. Bruchlos, D. Litzkendorf, W. Gawalek, . Physica C: Superconductivity. 356 (4), 277 (2001). ADSCrossRefGoogle Scholar
  2. 2.
    X. Cui, G. Liu, J. Wang, Z. Huang, Y. Zhao, B. Tao, Y. Li, . Physica C: Superconductivity. 466(1-2), 1 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Slimani, E. Hannachi, M. B. Salem, A. Hamrita, M. B. Salem, F. B. Azzouz, . J. Supercond. Nov. Magn. 28(10), 3001 (2015)CrossRefGoogle Scholar
  4. 4.
    N. Strickland, N. Long, E. Talantsev, P. Hoefakker, J. Xia, M. Rupich, T. Kodenkandath, W. Zhang, X. Li, Y. Huang, . Physica C: Superconductivity. 468(3), 183 (2008). ADSCrossRefGoogle Scholar
  5. 5.
    G. Shams, A. Mahmoodinezhad, M. Ranjbar, . Iranian Journal of Science and Technology, Transactions A: Science. 42(4), 2337 (December 2018)Google Scholar
  6. 6.
    S. Dadras, Z. Gharehgazloo, . Physica B: Condensed Matter. 492, 45 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    B.A. Malik, M.A. Malik, K. Asokan, . Chinese J. Phys. 55(1), 170 (2017). ADSCrossRefGoogle Scholar
  8. 8.
    V. Bartůněk, O. Smrčková, . Ceramics - Silikaty. 54(2), 133 (2010). Google Scholar
  9. 9.
    S. N. Abd-Ghani, H. K. Wye, I. Kong, R. Abd-Shukor, W. Kong, In solid state science and technology IV, Advanced materials research, vol. 895 (Trans Tech Publications Ltd), Advanced Materials Research, vol. 895, pp. 105–108. (2014)
  10. 10.
    O. Görür, C. Terzioġlu, A. Varilci, M. Altunbaṡ, . Supercond. Sci. Technol. 18(9), 1233 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    E. Mendoza, T. Puig, E. Varesi, A. Carrillo, J. Plain, X. Obradors, . Physica C: Superconductivity. 334(1-2), 7 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    M. Farbod, M. R. Batvandi, . Physica C: Superconductivity. 471(3-4), 112 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    P. Diko, G. Fuchs, G. Krabbes, . Physica C: Superconductivity. 363(1), 60 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    J. Joo, J. Kim, W. Nah, . Supercond. Sci. Technol. 11(7), 645 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    L. Aslamazov, A. Larkin, In 30 Years Of The Landau Institute—Selected Papers (World Scientific, 1996), pp. 23–28Google Scholar
  16. 16.
    P. Pureur, R. M. Costa, JrP. Rodrigues, J. Kunzler, J. Schaf, L. Ghivelder, J. Campá, I. Rasines, . Physica C: Superconductivity. 235, 1939 (1994)ADSCrossRefGoogle Scholar
  17. 17.
    X. Tang, Q. Liu, J. Wang, H. Chan, . Appl. Phys. A. 96(4), 945 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    A. A. Yusuf, A. Yahya, N. A. Khan, F. M. Salleh, E. Marsom, N. Huda, . Physica C: Superconductivity. 471(11-12), 363 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    N. A. Khan, N. Hassan, M. Irfan, T. Firdous, . Physica B: Condens. Matter. 405(6), 1541 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    M. Francois, A. Junod, K. Yvon, A. Hewat, J. Capponi, P. Strobel, M. Marezio, P. Fischer, . Solid State Commun. 66(10), 1117 (1988)ADSCrossRefGoogle Scholar
  21. 21.
    M. Hafez, F. Al-Marzouki, W. E. Mahmoud, . Mater. Lett. 65(12), 1868 (2011)CrossRefGoogle Scholar
  22. 22.
    F. A. Al-Agel, E. Al-Arfaj, A. A. Al-Ghamdi, B. D. Stein, Y. Losovyj, L. M. Bronstein, F. Shokr, W. E. Mahmoud, . Ceram. Int. 41(1), 1115 (2015)CrossRefGoogle Scholar
  23. 23.
    H. S. Al-Ghamdi, W. E. Mahmoud, . J. Lumin. 145, 880 (2014)CrossRefGoogle Scholar
  24. 24.
    H. S. Al-Ghamdi, W. E. Mahmoud, . Mater. Lett. 105, 62 (2013)CrossRefGoogle Scholar
  25. 25.
    D. Cahen, Z. Moisi, M. Schwartz, . Mater. Res. Bull. 22(11), 1581 (1987)CrossRefGoogle Scholar
  26. 26.
    R. Giri, V. Awana, H. Singh, R. Tiwari, O. Srivastava, A. Gupta, B. Kumaraswamy, H. Kishan, . Physica C: Superconductivity and its applications. 419(3-4), 101 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    M. Gurvitch, A. Fiory, . Phys. Rev. Lett. 59(12), 1337 (1987)ADSCrossRefGoogle Scholar
  28. 28.
    C. Varma, P. Littlewood, S. Schmitt-Rink, E. Abrahams, A. Ruckenstein, . Phys. Rev. Lett. 63 (18), 1996 (1989)ADSCrossRefGoogle Scholar
  29. 29.
    J. Phillips, . Phys. Rev. B. 40(10), 7348 (1989)ADSCrossRefGoogle Scholar
  30. 30.
    M. Sahoo, D. Behera, J. Mater. Sci. Eng. 1(115) (2012)Google Scholar
  31. 31.
    I. Bouchoucha, F. B. Azzouz, M. B. Salem, . J. Supercond. Nov. Magn. 24(1-2), 345 (2011)CrossRefGoogle Scholar
  32. 32.
    Y. Xu, M. Izumi, Y. Zhang, Y. Kimura, . Physica C: Superconductivity. 469(15-20), 1215 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    Y. Xu, M. Izumi, K. Tsuzuki, Y. Zhang, C. Xu, M. Murakami, N. Sakai, I. Hirabayashi, . Supercond. Sci. Technol. 22(9), 095009 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    G. Shams, J. Cochrane, G. Russell, . Physica C: Superconductivity. 363(4), 243 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    V. Antal, M. Kaňuchová, M. Šefčiková, J. Kováč, P. Diko, M. Eisterer, N. Hörhager, M. Zehetmayer, H. Weber, X. Chaud, . Supercond. Sci. Technol. 22(10), 105001 (2009)ADSCrossRefGoogle Scholar
  36. 36.
  37. 37.
    E. Hannachi, Y. Slimani, M. B. Salem, A. Hamrita, D. Mani, M. B. Salem, F. B. Azzouz, . Mater. Chem. Phys. 159, 185 (2015)CrossRefGoogle Scholar
  38. 38.
    A. A. Aly, N. Mohammed, R. Awad, H. Motaweh, D. E. S. Bakeer, . J. Supercond. Nov. Magn. 25(7), 2281 (2012)CrossRefGoogle Scholar
  39. 39.
    A. Mohanta, D. Behera, . Physica C: Superconductivity. 470(4), 295 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    Q. Hao, C. Li, S. Zhang, J. Feng, M. Du, . Physica C: Superconductivity and its applications. 471 (21-22), 1100 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    P. K. Gallagher, H. M. O’Bryan, S. Sunshine, D. Murphy, . Mater. Res. Bull. 22(7), 995 (1987)CrossRefGoogle Scholar
  42. 42.
    J. R. Rojas, A. Jurelo, R. M. Costa, L. M. Ferreira, P. Pureur, M. Orlando, P. Prieto, G. Nieva, . Physica C: superconductivity. 341, 1911 (2000)ADSCrossRefGoogle Scholar
  43. 43.
    P. Mayorga, D. Téllez, Q. Madueno, J. Alfonso, J. Roa-Rojas, . Braz. J. Phys. 36(3B), 1084 (2006)ADSCrossRefGoogle Scholar
  44. 44.
    J. Roa-Rojas, D. Téllez, M. Rojas Sarmiento, . Braz. J. Phys. 36(3B), 1105 (2006)ADSCrossRefGoogle Scholar
  45. 45.
    A. Kujur, D. Behera, . Thin solid films. 520(6), 2195 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    S. Falahati, F. Saeb, V. Daadmehr, . Iranian Journal of Physics Research. 9(1), 43 (2009)Google Scholar
  47. 47.
    X. Wang, J. Horvat, G. Gu, K. Uprety, H. Liu, S. Dou, . Physica C: Superconductivity. 337 (1-4), 221 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2019

Authors and Affiliations

  1. 1.Department of Physics, Shiraz BranchIslamic Azad UniversityShirazIran
  2. 2.Young Researchers and Elite Club, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations