Advertisement

Photoluminescence Properties of Dy3+ Ion-Doped Li2O-PbO-Gd2O3-SiO2 Glasses for White Light Application

  • I. Khan
  • G. Rooh
  • R. Rajaramakrishna
  • N. Srisittipokakun
  • H. J. Kim
  • J. KaewkhaoEmail author
  • Y. RuangtaweepEmail author
Atomic Physics
  • 12 Downloads

Abstract

Dy2O3-doped lithium lead gadolinium silicate glass was prepared for physical, optical, structural, X-ray induced luminescence and PL-luminescence properties for various potential applications in solid state lighting applications. JO parameters were estimated using JO theory. For the developed samples using emission spectra, CIE color coordinates and yellow/blue ratio are measured for white light emission. The transition 4F9/2 → 6H13/2 has higher value of stimulated emission cross section and radiative transition probability for all concentration showing its potential for laser emission. This transition has calculated and experimental branching ratio (βR) more than 0.50. The CCT value for developed glass samples is 4264 K which is more than warm CCT (CCT > 4000 K). The allowed indirect (n = 2) and direct (n = 1/2) band gaps were determined and found to be decreasing with increasing Dy2O3 concentration. The lifetime non-exponential nature is fitted well to IH model for S = 6. The energy transfer parameter (Q) increases and experimental lifetime decreases for concentration increase of Dy3+ ions in LPDy glasses. The investigation shows the potential of LPDy glasses for the laser and white light generation application.

Keywords

Lead oxide Dysprosium Rare earth CIE chromaticity Silicate glasses 

Notes

Acknowledgements

The author (I. Khan) is thankful to his advisers, Professor Dr. Gul Rooh, Dr. J. Kaewkhao, Y. Ruangtaweep and Dr. N. Srisittipokakun in Thailand for their guidance and help. In addition, author would like to thank National Research Council of Thailand (NRCT) and Nakhon Pathom Rajabhat University (NPRU) for supporting our research.

References

  1. 1.
    P.P. Pawar, S.R. Munishwar, S. Gautam, R.S. Gedam, Physical, thermal, structural and optical properties of Dy3+ doped lithium alumino-borate glasses for bright W-LED. J. Lumin. 183, 79–88 (2017)CrossRefGoogle Scholar
  2. 2.
    I. Khan, G. Rooh, R. Rajaramakrishna, N. Sirsittapokakun, H.J. Kim, J. Kaewkhao, K. Kirdsiri, Energy transfer phenomenon of Gd3+ to excited ground state of Eu3+ ions in Li2O-BaO- Gd2O3-SiO2-Eu2O3 glasses. Spectrochim. Acta A Mol. Biomol. Spectrosc. 210, 21–29 (2019)ADSCrossRefGoogle Scholar
  3. 3.
    G.F. Little, G.B. Sahaya, M.R. Srinivasa, N. Veeraiah, The structural investigations of PbO–P2O5–Sb2O3 glasses with MoO3 as additive by means of dielectric, spectroscopic and magnetic studies. Physica B 393, 61–72 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    K. El-Egili, H. Doweidar, Y.M. Moustafa, I. Abbas, Structure and some physical properties of PbO–P2O5 glasses. Physica B 339, 237–245 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    I. Khan, G. Rooh, R. Rajaramakrishn, N. Sirsittipokakun, H.J. Kim, C. Wongdeeying, J. Kaewkhao, Development of Eu3+ doped Li2O-BaO-GdF3-SiO2 oxyfluoride glass for efficient energy transfer from Gd3+ to Eu3+ in red emission solid state device application. J. Lumin. 203, 515–524 (2018)CrossRefGoogle Scholar
  6. 6.
    C. Tang, S. Liu, L. Liu, D.P. Chen, Luminescence properties of Gd3+-doped borosilicate scintillating glass. J. Lumin. 160, 317–320 (2015)CrossRefGoogle Scholar
  7. 7.
    Z. Onderisinova, M. Kucera, M. Hanus, M. Nikl, Temperature-dependent nonradiative energy transfer from Gd3+ to Ce3+ ions in co-doped LuAG:Ce,Gd garnet scintillators. J. Lumin. 167, 106–113 (2015)CrossRefGoogle Scholar
  8. 8.
    R. Rajaramakrishna, B. Knorr, V. Dierolf, R.V. Anavekar, H. Jain, J. Lumin. 156, 192–198 (2014)CrossRefGoogle Scholar
  9. 9.
    J. Kaewkhao, N. Wantana, S. Kaewjaeng, S. Kothan, H.J. Kim, Luminescence characteristics of Dy3+ doped Gd2O3-CaO-SiO2-B2O3 scintillating glasses. J. Rare Earths 34, 583–589 (2016)CrossRefGoogle Scholar
  10. 10.
    L. Yuliantini, E. Kaewnuam, R. Hidayat, M. Djamal, K. Boonin, P. Yasaka, C. Wongdeeying, N. Kiwsakunkran, J. Kaewkhao, Yellow and blue emission from BaO-(ZnO/ZnF2)-B2O3-TeO2 glasses doped with Dy3+ for laser medium and scintillation material applications. Opt. Mater. 85, 382–390 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    J. Pisarska, L. Zur, W.A. Pisarski, Optical spectroscopy of Dy3+ ions in heavy metal lead-based glasses and glass-ceramics. J. Mol. Struct. 993, 160–166 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    D. Rajesh, Y.C. Ratnakaram, M. Seshadri, A. Balakrishna, T. SatyaKrishna, Structural and luminescence properties of Dy3+ ion in strontium lithium bismuth borate glasses. J. Lumin. 132, 841–849 (2012)CrossRefGoogle Scholar
  13. 13.
    C.K. Jayasankar, V. Venkatramu, S. Surendra Babu, P. Babu, Luminescence properties of Dy3+ ions in a variety of borate and fluoroborate glasses containing lithium, zinc, and lead. J. Alloy. Comp. 374, 22–26 (2004)CrossRefGoogle Scholar
  14. 14.
    M. Shoaib, G. Rooh, N. Chanthima, R. Rajaramakrishn, H.J. Kim, C. Wongdeeying, J. Kaewkhao, Intriguing energy transfer mechanism in oxide and oxy-fluoride phosphate glasses. Opt. Mater. 88, 429–444 (2019)ADSCrossRefGoogle Scholar
  15. 15.
    S.F. Khor, Z.A. Talib, W.M. Mat Yunus, Optical properties of ternary zinc magnesium phosphate glasses. Ceram. Int. 38, 935–940 (2012)CrossRefGoogle Scholar
  16. 16.
    Y.B. Saddeek, Structural and acoustical studies of lead sodium borate glasses. J. Alloys Compd. 464, 14–21 (2009)CrossRefGoogle Scholar
  17. 17.
    P.P. Pawar, S.R. Munishwar, R.S. Gedam, Physical and optical properties of Dy3+/Pr3+ Co-doped lithium borate glasses for W-LED. J. Alloys Compd. 660, 347–355 (2016)CrossRefGoogle Scholar
  18. 18.
    M.A. Algradee, M. Sultan, O.M. Samir, A. Elwhab, B. Alwany, Electronic polarizability, optical basicity and interaction parameter for Nd2O3 doped lithium–zinc–phosphate glasses. Applied Physics A 123, 524 (2017)CrossRefGoogle Scholar
  19. 19.
    R.J. Amjad, M.R. Sahar, S.K. Ghoshal, M.R. Dousti, R. Arifin, Synthesis and characterization of Dy3+ doped zinc–lead-phosphate glass. Opt. Mater. 35, 1103–1108 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    M.A. Marzouk, M.A. Ouis, Y.M. Hamdy, Spectroscopic studies and luminescence spectra of Dy2O3 doped lead phosphate glasses. Silicon 4, 221–227 (2012)CrossRefGoogle Scholar
  21. 21.
    I. Khan, G. Rooh, R. Rajaramakrishna, N. Srisittipokakun, C. Wongdeeying, N. Kiwsakunkran, N. Wantana, H.J. Kim, J. Kaewkhao, S. Tuscharoen, Photoluminescence and white light generation of Dy2O3 doped Li2O-BaO-Gd2O3- SiO2 for white light LED. J. Alloys Compd. 774, 244–254 (2019)CrossRefGoogle Scholar
  22. 22.
    B.R. Judd, Optical absorption intensities of rare-earth ions. Phys. Rev. 127, 750–761 (1962)ADSCrossRefGoogle Scholar
  23. 23.
    G.S. Ofelt, Intensities of crystal spectra of rare-earth ions. J. Chem. Phys. 37(PP), 511–520 (1962)ADSCrossRefGoogle Scholar
  24. 24.
    R. Vijayakumar, G. Venkataiah, K. Marimuthu, Structural and luminescence studies on Dy3+ doped boro-phosphate glasses for white LED’s and Laser applications.  https://doi.org/10.1016/j.jallcom.2015.08.219
  25. 25.
    B. Shanmugavelu, V.V.R.K. Kuma, Luminescence studies of Dy3+ doped bismuth zinc borate glasses. J. Lumin. 146, 358–363 (2014)CrossRefGoogle Scholar
  26. 26.
    L. Jyothi, G. Upender, R. Kuladeep, D. Narayana Rao, Structural, thermal, optical properties and simulation of white light of titanium-tungstate-tellurite glasses doped with dysprosium. Mater. Res. Bull. 50, 424–431 (2014)CrossRefGoogle Scholar
  27. 27.
    R.T. Karunakaran, K. Marimuthu, S. Surendra Babu, S. Arumugam, Structural, optical and thermal investigations on Dy3+ doped NaF–Li2O–B2O3 glasses. Physica B 404, 3995–4000 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    S. Selvi, G. Venkataiah, S. Arunkumar, G. Muralidharan, K. Marimuthu, Structural and luminescence studies on Dy3+ doped lead boro–telluro-phosphate glasses. Physica B 454, 72–81 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    C.K. Jorgensen, R. Reisfeld, Judd–Ofelt parameters and chemical bonding. J. Less Common Met. 93, 107–112 (1983)CrossRefGoogle Scholar
  30. 30.
    S.S. Babu, P. Babu, C.K. Jayasankar, T. Tröster, W. Sievers, G. Wortmann, Optical properties of Dy3+-doped phosphate and fluorophosphate glasses. Opt. Mater. 31, 624–631 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    S.N. Rasool, L.R. Moorthya, C.K. Jayasankar, Optical and luminescence properties of Dy3+ ions in phosphate based glasses. Solid State Sci. 22, 82–90 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    C. Basavapoornima, C.K. Jayasankar, P.P. Chandrachoodan, Luminescence and laser transition studies of Dy3+ K–Mg–Al fluorophosphates glasses. Phys. B 404, 235–242 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    M. Vijayakumar, K. Marimuthu, Structural and luminescence properties of Dy3+ doped oxyfluoro-borophosphate glasses for lasing materials and white LEDs. J. Alloy. Comp. 629, 230–241 (2015)CrossRefGoogle Scholar
  34. 34.
    S.A. Saleem, B.C. Jamalaiah, M. Jayasimhadri, A. Srinivasa Rao, K. Jang, L.R. Moorthy, Luminescent studies of Dy3+ ion in alkali lead telluro fluoro borate glasses. J. Quant. Spectrosc. Radiat. Transf. 112, 78–84 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    C.R. Kesavulu, C.K. Jayasankar, White light emission in Dy3+-doped lead fluorophosphate glasses. Mater. Chem. Phys. 130, 1078–1085 (2011)CrossRefGoogle Scholar
  36. 36.
    Y. Dwivedi, S.B. Rai, Spectroscopic study of Dy3+ and Dy3+/Yb3+ ions co-doped in barium fluoroborate glass. Opt. Mater. 31, 1472–1477 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    P. Van Do, V.P. Tuyen, V.X. Quang, N.T. Thanh, V.T.T. Ha, H. Van Tuyen, N.M. Khaidukov, J. Marcazzó, Y.-I. Lee, B.T. Huy, Optical properties and Judd–Ofelt parameters of Dy3+ doped K2GdF5 single crystal. Opt. Mater. 35, 1636–1641 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    T. Srihari, C.K. Jayasankar, Fluorescence properties and white light generation from Dy3+-doped niobium phosphate glasses. Opt. Mater. 69, 87–95 (2017)ADSCrossRefGoogle Scholar
  39. 39.
    G. Venkataiah, C.K. Jayasankar, Dy3+-doped tellurite based tungsten-zirconium glasses: spectroscopic study. J. Mol. Struct. 1084, 182–189 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    M.N. Khan, Understanding LED Illumination (CRC Press, London, 2013)Google Scholar
  41. 41.
    C.S. McCamy, Correlated color temperature as an explicit function of chromaticity coordinates. Color. Res. Appl. 17, 142–144 (1992)CrossRefGoogle Scholar
  42. 42.
    X.Y. Sun, D.G. Jiang, W.F. Wang, C.Y. Cao, Y.N. Li, G.T. Zhen, H. Wang, X.X. Yang, H.H. Chen, Z.J. Zhang, J.T. Zhao, Luminescence properties of B2O3-GeO2-Gd2O3 scintillating glass doped with rare-earth and transition-metal ions. Nucl. Instrum. Methods Phys. Res. A 716, 90–95 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    J. Pisarska, Optical properties of lead borate glasses containing Dy3+ ions. J. Phys.: Condens. Matter 21, 285101 (2009) (6pp)Google Scholar
  44. 44.
    N. Vijaya, K. Upendra Kumar, C.K. Jayasankar, Dy3+-doped zinc fluorophosphate glasses for white luminescence applications. Spectrochim. Acta A Mol. Biomol. Spectrosc. 113, 145–153 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2019

Authors and Affiliations

  1. 1.Department of PhysicsAbdul Wali Khan UniversityMardanPakistan
  2. 2.Center of Excellence in Glass Technology and Materials Science (CEGM)Nakhon Pathom Rajabhat UniversityNakhon PathomThailand
  3. 3.Physics Program, Faculty of Science and TechnologyRajabhat UniversityNakhon PathomThailand
  4. 4.Department of PhysicsKyungpook National UniversityDaeguRepublic of Korea

Personalised recommendations