Relativistic Quantum Dynamics of a Neutral Dirac Fermion in the Presence of an Electromagnetic Field

  • R. R. S. OliveiraEmail author
  • M. F. SousaEmail author
Condensed Matter


In this work, we study the (2 + 1)-dimensional Dirac equation for a neutral fermion with magnetic dipole moment in the presence of an electromagnetic field. Next, we explicitly determine the eigenfunctions and the relativistic energy spectrum of the fermion. As result, we verified that these eigenfunctions are written in terms of the generalized Laguerre polynomials and the energy spectrum depends on the quantum numbers, n = 0,1,2,… and mj = 0,± 1,± 2,…, homogeneous magnetic field B, and of the cyclotron frequency ωAC generated by the electric field. Besides that, this energy spectrum may have finite or infinite degeneracy depending on the values of mj. In particular, we also verified that in the absence of the electric field (ωAC = 0), the energy spectrum reduces to a physical quantity (energy) that depends on the rest mass of the fermion and antifermion and of the magnetic field, already in the absence of the magnetic field (B = 0), the energy spectrum still remains quantized in terms of the quantum numbers n and mj; on the other hand, in the absence of the electromagnetic field (ωAC = B = 0), we get the rest energy of the fermion and antifermion. Finally, we compare our results with the literature, where we observe a similarity in some results of the Dirac oscillator.


Dirac equation Eletromagnetic field Relativistic quantum dynamics Neutral Dirac fermion 



The authors received financial support from the Fundação Cearense de apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP) the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).


  1. 1.
    R. Koc, M. Koca, Spectrum of the relativistic particles in various potentials. Mod. Phys. Lett. A. 20, 911–921 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    N. Ferkous, A. Bounames, Energy spectrum of 2D Dirac oscillator inthe presence of the Aharonov-Bohm effect. Phys. Lett. A. 325, 21–29 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    A.M. Schakel, Relativistic quantum Hall effect. Phys. Rev. D. 43, 1428 (1991)ADSCrossRefGoogle Scholar
  4. 4.
    F.D.M. Haldane, Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015 (1988)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    J.A. Neto, M.J. Bueno, C. Furtado, Two-dimensional quantum ring in a graphene layer in the presence of a Aharonov- Bohm flux. Ann. Phys. 373, 273–285 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    A. Neagu, A.M. Schakel, Induced quantum numbers in the (2 + 1)-dimensional electron gás. Phys. Rev. D. 48, 1785 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    A. Jellal, A.D. Alhaidari, H. Bahlouli, Dynamical mass generation via space compactification in graphene. Phys. Rev. A. 80, 012109 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Twodimensional gas of massless Dirac fermions in graphene. Nature. 438, 197 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Chiral tunneling and the Klein paradox in graphene. Nat. Phys. 2, 620 (2006)CrossRefGoogle Scholar
  10. 10.
    A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    A.K. Geim, Graphene: Status and prospects. Science. 324, 1530–1534 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    A.K. Geim, K.S. Novoselov, in . Nanoscience and Technology: A Collection of Reviews from Nature Journals, pp. 11–19, (2010)Google Scholar
  13. 13.
    Y. Aharonov, A. Casher, Topological quantum effects for neutral particles. Phys. Rev. Lett. 53, 319 (1984)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    C.R. Hagen, Exact equivalence of spin-1/2 Aharonov-Bohm and Aharonov-Casher effects. Phys. Rev. Lett. 64, 2347 (1990)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    E.O. Silva, F.M. Andrade, C. Filgueiras, H. Belich, Bound states of massive fermions in Aharonov-Bohm-like fields. Eur. Phys. J. C. 73, 2402 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    S. Bruce, L. Roa, C. Saavedra, A.B. Klimov, A.B. Klimov, Unbroken supersymmetry in the Aharonov-Casher effect. Phys. Rev. A. 60, R1 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    B. Mirza, M. Zarei, Non-commutative quantum mechanics and the Aharonov-Casher effect. Eur. Phys. J. C. 32, 583–586 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    K. Li, J. Wang, . Eur. Phys. J. C. 50, 1007–1011 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    K. Li, J. Wang, The topological AC effect on non-commutative phase space. Eur. Phys. J. C. 50, 1007–1011 (2007)ADSCrossRefzbMATHGoogle Scholar
  20. 20.
    K. Bakke, H. Belich, E.O. Silva, Relativistic Landau-Aharonov-Casher quantization based on the Lorentz symmetry violation background. J. Math. Phys. 52, 063505 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Q.G. Lin, Aharonov-Bohm effect on Aharonov-Casher scattering. Phys. Rev. A. 72, 042103 (2005). 81, 012710 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    F.S. Azevedo, E.O. Silva, L.B. Castro, C. Filgueiras, D. Cogollo, Relativistic quantum dynamics of neutral particle in external electric fields: An approach on effects of spin. Ann. Phys. 362, 196–207 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    K. Bakke, Relativistic bounds states for a neutral particle confined to a parabolic potential induced by noninertial effects. Phys. Lett. A. 374, 4642–4646 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    K. Bakke, On noninertial effects inducing a confinement of a neutral particle to a hard-wall confining potential. Open Phys. 11, 1589–1597 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    K. Bakke, J.R. Nascimento, C. Furtado, Geometric phase for neutral particle in the presence of a topological defect. Phys. Rev. D. 78, 064012 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    K. Bakke, C. Furtado, On the interaction of the Dirac oscillaton with the Aharonov-Casher system in topological defect backgrounds. Ann. Phys. 336, 489–504 (2013)ADSCrossRefzbMATHGoogle Scholar
  27. 27.
    K. Bakke, On the effects of curvature on the confinement of a neutral particle to a quantum dot induced by noninertial effects. Int. J. Theor. Phys. 51, 759–771 (2012)CrossRefzbMATHGoogle Scholar
  28. 28.
    K. Bakke, A geometric approach to confining a Dirac neutral particle in analogous way to a quantum dot. Eur. Phys. J. B. 85, 354 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    W. Greiner, Relativistic Quantum Mechanics. Wave Equations (Springer, Berlin, 1997)Google Scholar
  30. 30.
    M. Moshinsky, A. Szczepaniak, . J. Phys. A, Math. Gen. 22, L817 (1989)ADSCrossRefGoogle Scholar
  31. 31.
    J. Bentez, R.M. y Romero, H.N. Nú,ez-Yépez, A.L. Salas-Brito, Solution and hidden supersymmetry of a Dirac oscillator. Phys. Rev. Lett. 64, 1643 (1990)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    R.P. Martinez-y-Romero, H.N. Núnez-Yépez, A.L. Salas-Brito, Relativistic quantum mechanics of a Dirac oscillator. Eur. J. Phys. 16, 135 (1995)MathSciNetCrossRefGoogle Scholar
  33. 33.
    S. Bruce, M. D. Campos, J. Diaz-Valdes, Low-Energy neutron interaction with a classical electric field. Braz. J. Phys. 44, 356–360 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    M. Ericsson, E. Sjöqvist, Towards a quantum hall effect for atoms using electric fields. Phys. Rev. A. 65, 013607 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    L.R. Ribeiro, C. Furtado, J.R. Nascimento, Landau levels analog to electric dipole. Phys. Lett. A. 348, 135–140 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    C. Furtado, J.R. Nascimento, L.R. Ribeiro, Landau quantization of neutral particles in an external field. Phys. Lett. A. 358, 336–338 (2006)ADSCrossRefzbMATHGoogle Scholar
  37. 37.
    L.R. Ribeiro, E. Passos, C. Furtado, J.R. Nascimento, Landau analog levels for dipoles in non-commutative space and phase space. Eur. Phys. J. C. 56, 597–606 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    L. Dantas, C. Furtado, Induced electric dipole in a quantum ring. Phys. Lett. A. 377, 2926–2930 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    I.C. Fonseca, K. Bakke, On an atom with a magnetic quadrupole moment subject to harmonic and confining potentials. Proc. R. Soc. A. 471, 20150362 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    E.O. Silva, On planar quantum dynamics of a magnetic dipole moment in the presence of electric and magnetic fields. Eur. Phys. J. C. 74, 3112 (2014)CrossRefGoogle Scholar
  41. 41.
    V.M. Villalba, A.R. Maggiolo, Energy spectrum of a 2D Dirac electron in the presence of a magnetic field. Eur. Phys. J. B. 22, 31 (2001)ADSGoogle Scholar
  42. 42.
    F.M. Andrade, E.O. Silva, Remarks on the Dirac oscillator in (2 + 1) dimensions. Europhys. Europhys. Lett. 108, 30003 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    D.J. Griffiths. Introduction to Electrodynamics, 4th edn. (Pearson Education, London, 2012)Google Scholar
  44. 44.
    J.J. Sakurai. Modern Quantum Mechanics (Addison-Wesley Publishing Company, Boston, 1994)Google Scholar
  45. 45.
    K. Bakke, C. Furtado, On the confinement of a Dirac particle to a two-dimensional ring. Phys. Lett. A. 376, 1269–1273 (2012)ADSCrossRefzbMATHGoogle Scholar
  46. 46.
    M. Abramowitz, I.A. Stegun. Handbook of Mathematical Functions (Dover Publications Inc., New York, 1965)zbMATHGoogle Scholar
  47. 47.
    P. Strange. Relativistic Quantum Mechanics: with Applications in Condensed Matter and Atomic Physics (Cambridge University Press, Cambridge, 1998)CrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2019

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidade Federal do Ceará (UFC)FortalezaBrazil
  2. 2.Departamento de FísicaUniversidade Federal de Campina Grande (UFCG)Campina GrandeBrazil

Personalised recommendations