Brazilian Journal of Physics

, Volume 49, Issue 3, pp 372–378 | Cite as

Polytropic Coefficient Function for Tonks-Langmuir-Type Bounded Plasmas with Kappa-Distributed Electrons and Cold Ion Source

  • Majid Khan
  • S. S. Hussain
  • Z. Sheng
  • M. KamranEmail author
General and Applied Physics


In the fluid description of the classical Tonks-Langmuir (TL) model [Tonks and Langmuir, Phys Rev., 34: 876, 1929], arises the “closure problem.” The continuity and the momentum equations need, in addition, a closure equation. Usually, this closure equation assumes zero ion pressure (pi = 0), or a constant ion polytropic coefficient (γi). These simplified assumptions are likely to produce incorrect results, because (i) the ions have a non-zero temperature, even if the ion source is assumed to be cold, and (ii) the polytropic coefficient is, in fact, a function of space (or potential), and is far from constant (Kuhn et al., AIP Conference Proceedings, 1306: 216, 2010). Here, the concept of polytropic coefficient function (PCF) is applied to a TL-type discharge with a Kappa-distributed ion source. The ion density and temperature are calculated numerically, for different values of the spectral index κ. The polytropic coefficient function is then calculated using the relation γ = 1 + (n/T) (dT/dn). Striking deviation from results of the classical case are observed. It is shown here that, for Kappa-distributed ion sources, the ion PCF is not a constant, but is a function of the potential. Moreover, the sheath-edge potential differs significantly from the classical case. It is concluded that in order to close the set of fluid equations in an appropriate manner, better approximations to the PCF are needed.


Polytropic coefficient function Kappa distribution TL discharge 



The authors thank Dr. D. Tskhakaya for his valuable suggestions.

Funding Information

This study is supported and provided by the Higher Education Commission (HEC), Pakistan, under project no. 7632/Federal/NRPU/R&D/HEC/2017 and by the National Magnetic Confinement Fusion Program under Grant no. 2013GB104004 and Fundamental Research Fund for Chinese Central Universities. It is also supported and provided by HEC, Pakistan, under project no. 7659/Balochistan/NRPU/R&D/HEC/2017.


  1. 1.
    P.C. Stangeby. The Plasma Boundary of Fusion Devices (Institute of Physics Publishing, Bristol, 2000)CrossRefGoogle Scholar
  2. 2.
    J. Wesson. Tokamaks (Oxford University Press, Oxford, 2004)zbMATHGoogle Scholar
  3. 3.
    M. Ariola, A. Pironti. Magnetic Control of Tokamak Plasmas (Springer, Berlin, 2016)CrossRefzbMATHGoogle Scholar
  4. 4.
    M.A. Lieberman, A. Lichtenberg. Principles of Plasma Discharges and Materials Processing (Wiley, New York, 1994)Google Scholar
  5. 5.
    F.F. Chen, J.P. Chang. Lecture Notes on Principles of Plasma Processing (Springer, Berlin, 2012)Google Scholar
  6. 6.
    I.H. Hutchinson. Principles of Plasma Diagnostics (Cambridge University Press, Cambridge, 2002)CrossRefGoogle Scholar
  7. 7.
    L. Tonks, I. Langmuir, A general theory of the plasma of an arc. Phys Rev. 34, 876 (1929)ADSCrossRefGoogle Scholar
  8. 8.
    E.R. Harrison, W. B. Thompson, The low pressure plane symmetric discharge. Proc. Phys. Soc. London. 74, 145 (1959)ADSCrossRefGoogle Scholar
  9. 9.
    A. Caruso, A. Cavaliere, The structure of the collisionless plasma-sheath transition. Nuovo Cimento. 26, 145 (1962)CrossRefzbMATHGoogle Scholar
  10. 10.
    S.A. Self, Asymptotic plasma and sheath representations for low-pressure discharges. J. Appl. Phys. 36, 456 (1965)ADSCrossRefGoogle Scholar
  11. 11.
    L.C. Woods, Density waves in low-pressure plasma columns. J. Fluid Mech. 23, 315 (1965)ADSCrossRefGoogle Scholar
  12. 12.
    G.S. Kino, E.K. Shaw, Two-dimensional low-pressure discharge theory. Phys. Fluids. 9, 587 (1966)ADSCrossRefGoogle Scholar
  13. 13.
    K.-U. Riemann, J. Seebacher, D.D. Sr Tskhakaya, S. Kuhn, The low pressure plane symmetric discharge. Plasma Phys. Control. Fusion. 47, 1949 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    K.-U. Riemann, Plasma-sheath transition in the kinetic Tonks-Langmuir model. Phys. Plasmas. 13, 063508 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    P.C. Stangeby, J.E. Allen, Plasma boundary as a Mach surface. J. Phys A. 3, 304 (1970)ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    K.-U. Riemann, The Bohm criterion and sheath formation. J. Phys. D. 24, 493 (1991)ADSCrossRefGoogle Scholar
  17. 17.
    S. Kuhn, K.-U. Riemann, N. Jelic, D.D. Sr Tskhakaya, D. Jr. Tskhakaya, M. Stanojevic, Link between fluid and kinetic parameters near the plasma boundary. Phys. Plasmas. 13, 013503 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    S. Kuhn, M. Kamran, N. Jelic, L. Kos, D. Jr Tskhakaya, D.D. Sr Tskhakaya, Closure of the hierarchy of fluid equations by means of the polytropic coefficient function (PCF). In: AIP conference proceedings, vol. 1306, pp. 216 (2010)Google Scholar
  19. 19.
    K.-U. Riemann, Polytropic coefficient γ in the fluid simulation of the plasma-sheath transition. In: 28th ICPIG, pp. 479 (2007)Google Scholar
  20. 20.
    N. Jelic, K.-U. Riemann, T. Gyergyek, S. Kuhn, M. Stanojevic, J. Duhovnik, Fluid and kinetic parameters near the plasma-sheath boundary for finite Debye lengths. Phys. Plasmas. 14, 103506 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    L. Kos, N. Jelic, S. Kuhn, J. Duhovnik, Extension of the Bissell-Johnson plasma-sheath model for application to fusion-relevant and general plasmas. Phys. Plasmas. 16, 093503 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    B. Lin, N. Xiang, J. Ou, The ion polytropic coefficient in a collisionless sheath containing hot ions. Phys. Plasmas. 23, 083508 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    F. Xiao, Modelling energetic particles by a relativistic kappa-loss-cone distribution function in plasmas. Plasma Phys. Control. Fusion. 48, 203 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    T.K. Baluku, M.A. Hellberg, Dust acoustic solitons in plasmas with kappa-distributed electrons and/or ions. Phys. Plasmas. 15, 123705 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    Z. Liu, J. Du, Dust acoustic instability driven by drifting ions and electrons in the dust plasma with Lorentzian kappa distribution. Phys. Plasmas. 16, 123707 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    D. Bara, M. Djebli, D.B. Doumaz, Combined effects of electronic trapping and non-thermal electrons on the expansion of laser produced plasma into vacuum. Laser and Particle Beams. 32, 391 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    J. Razzaq, Q. Haque, M. Khan, A. M. Bhatti, M. Kamran, A. M. Mirza, Nonlinear structure formation in ion-temperature-gradient driven drift waves in pair-ion plasma with nonthermal electron distribution. Phys Plasmas. 25(02), 2018 (2119)Google Scholar
  28. 28.
    M. Kamran, S. Kuhn, D.D. Sr. Tskhakaya, M. Khan, Extended Tonks-Langmuir-type model with non-Boltzmann-distributed electrons and cold ion sources. J. Plasma Phys. 79, 169 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    T.K. Baluku, M.A. Hellberg, I. Kourakis, N.S. Saini, Dust ion acoustic solitons in a plasma with kappa-distributed electrons. Phys Plasmas. 17, 053702 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    E.D. Micheli, A fast algorithm for the inversion of Abel’s transform. Appl. Math. Comput. 301, 12 (2017)MathSciNetzbMATHGoogle Scholar
  31. 31.
    M. Abramowitz, I.A. Stegun (eds.), Handbook of Mathematical Functions (Dover, 1970)Google Scholar

Copyright information

© Sociedade Brasileira de Física 2019

Authors and Affiliations

  1. 1.Department of PhysicsQuaid-i-Azam UniversityIslamabadPakistan
  2. 2.Department of Physics, Institute of Fusion Theory and SimulationsZhejiang UniversityHangzhouPeople’s Republic of China
  3. 3.Department of Physics, FBASIslamic International UniversityIslamabadPakistan
  4. 4.Department of PhysicsCOMSATS University IslamabadIslamabadPakistan

Personalised recommendations