Advertisement

Structure of Hard Ellipses Confined in Hard Wall Square

  • S. HashemiEmail author
Condensed Matter
  • 5 Downloads

Abstract

Using Monte Carlo simulation in NVT ensemble, the behavior of hard ellipses confined in a square with hard walls, is analyzed here. Three different aspect ratios are used for confined ellipses. It is seen that confining can create especial configurations, e.g., elastic and bridge arrangements, or some defects in nematic phases. This phenomenon depends on the aspect ratio of ellipses, length of the square side, packing fraction of the system, and the kind of particle wall interaction (planar or homeotropic). The obtained results are compared with previous theoretical and experimental data and show a good agreement. The observed differences are always small and reasonable according to the components of the systems.

Keywords

Hard ellipses Confined system Order parameter Square cavity Topological charge 

Notes

References

  1. 1.
    D. Demus, J. Goodby, G.W. Gray, H.W. Spiess, V. Vill, Physical properties of liquid crystals (WILEY-VCH) (1999)Google Scholar
  2. 2.
    A.M. Sonnet, E.G. Virga. Dissipative Ordered Fluids (Springer, New York, 2012)CrossRefzbMATHGoogle Scholar
  3. 3.
    P.G. de Gennes, J. Prost. The Physics of Liquid Crystals (Clarendon Press, Oxford, 1993)Google Scholar
  4. 4.
    E. Velasco, L. Mederose, G. Navascues, Langmuir. 14, 5652 (1998)CrossRefGoogle Scholar
  5. 5.
    A. Ciach, J. Pekalski, W.T. Gozdz, Soft Matter. 9, 6301 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    A. Fortini, M. Dijkstra, Con. Matt. 18, 28 (2006)Google Scholar
  7. 7.
    D. de las Heras, Y. Martinez-Raton, L. Mederos, E. Velasco, J. Mol. liq. 185, 13 (2013)CrossRefGoogle Scholar
  8. 8.
    Y.M. Raton, E. Velasco, Phys. Rev. E. 87, 052314 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Y.M. Raton, E. Velasco, J. Chem. Phys. 137, 134906 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    L.G. Lopez, D.H. Linares, A.J. Ramirez-Pastor, Phys. Rev. E. 85, 053101 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    N.G. Almarza, J.M. Tavares, M.M. Telo da Gama, Phys. Rev. E. 85, 053102 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Y.M. Raton, E. Velasco, L. Mederos, J. Chem. Phys. 123, 104906 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Martinez Raton, E. Velasco, L. Mederos, Phys. Rev. E. 72, 031703 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    Y.M. Raton, E. Velasco, L. Mederos, J. Chem. Phys. 122, 064903 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    D. de las Heras, Y.M. Raton, L. Mederos, E. Velasco, Phys. Rev. E. 81, 021706 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    D. de las Heras, Y.M. Raton, L. Mederos, E. Velasco, Phys. Chem. Chem. Phys. 36, 10831 (2010)CrossRefGoogle Scholar
  17. 17.
    E. Basurto, C.H. Perez, C.A. Vargas, G. Odriozola, Phys. Chem. Chem. Phys. 20, 27490 (2010)CrossRefGoogle Scholar
  18. 18.
    J.A. Cuesta, D. Frenkel, Phys. Rew. A. 42, 2126 (1990)ADSCrossRefGoogle Scholar
  19. 19.
    W.S. Xu, Y.W. Li, Z.Y. Sun, L.J. An, J. Chem. Phys. 139, 024501 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    J. Vieillard-Baron, J. Chem. Phys. 56, 4729 (1972)ADSCrossRefGoogle Scholar
  21. 21.
    G.B. Carbajal, A.M. Jorda, G. Odriozola, J. Chem. Phys. 138, 064501 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    D. Frenkel, B.M. Mulder, J.P. McTague, Phys. Rev. Lett. 52, 287 (1984)ADSCrossRefGoogle Scholar
  23. 23.
    J. Galanis, D. Harries, D.L. Sackett, W. Losert, R. Nossal, Phys. Rev. Lett. 96, 028002 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    J. Dzubiella, M. Schmidt, H. Lowen, Phys. Rev E. 62, 5081 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Bin, D.J. Hua, W. Zheng, L.B. Hui, S.A. Chang, Chin. Phys. B. 24, 046402 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    D. Chen, S. Torquato, Phys. Rev. E. 92, 062207 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    C. Anquetil-Deck, D.J. Cleaver, T.J. Atherton, arXiv:1207.1731
  28. 28.
    M. Antlanger, G. Doppelbauer, M. Mazars, G. Kahl, arXiv:1401.4886
  29. 29.
    A.H. Lewis, D.G.A.L. Aarts, P.D. Howell, A. Majumdar, Appl. Math. 138, 438 (2017)Google Scholar
  30. 30.
    Y.M. Raton, E. Velasco, L. Mederos, J. Chem. Phys. 125, 014501 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    P.J. Ackerman, Z. Qi, I.I. Smalukh, Phys. Rev. E. 86, 021703 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    M. Ravnik, G.P. Alexander, J.M. Yeomans, S. Zumer, Proc. Natl. Acad. Sci. U.S.A. 108, 5188 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    A. Nych, U. Ognysta, M. Skarabot, M. Ravnic, S. Zumer, I. Musevic, Nat. Commun. 4, 1489 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    O.D. Lavrentovich, Proc. Natl. Acad. Sci. U.S.A. 108, 5143 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    C. Blanc, Science. 352, 40 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    M.N. Chernodub, JETP Lett. 83, 268 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    D. Melo, I. Fernandes, F. Moraes, S. Fumeron, E. Pereira, Phys. Let. A. 380, 3121 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    I. Musevic, M. Skarabot, U. Tkalec, M. Ravnic, S. Zumer, Science. 313, 954 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    I. Musevic, Ph. Trans. R. Soc. A. 371, 20120266 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    Z. Lv, H. Chen, H. Yuan, Adv. Sci. Lett. 16, 278 (2012)CrossRefGoogle Scholar
  41. 41.
    V. Yadav, J.-Y. Chastaing, A. Kudroll, Phys. Rev. E. 88, 052203 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    T. Geigenfeind, S. Rosenzweig, M. Schmidt, D. Heras, J. Chem. Phys. 142, 174701 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    I.C. Garlea, B.M. Mulder, Soft Matter, 608 (2015)Google Scholar
  44. 44.
    A.H. Lewis, I. Garlea, J. Alvarado, O.J. Dammone, P.D. Howell, A. Majumdar, B.M. Mulder, M.P. Lettinga, G.H. Koenderinkb, D.G.A.L. Aarts, Soft Matter. 10, 7865 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    M. Moradi, S. Hashemi, Physica A. 389, 4419 (2010)MathSciNetCrossRefGoogle Scholar
  46. 46.
    M. Moradi, F. Taghizadeh, Int. J. Mod. Phys. C. 20, 337 (2009)ADSCrossRefGoogle Scholar
  47. 47.
    P. Kalpaxis, G. Rickayzen, Mol Phys. 80, 391 (1993)ADSCrossRefGoogle Scholar
  48. 48.
    H. Miao, H. Ma, CJCP. 29, 212 (2016)ADSGoogle Scholar
  49. 49.
    H. Shin, M.J. Bowick, X. Xing, Phys. Rew. Lett. 101, 037802 (2008)ADSCrossRefGoogle Scholar
  50. 50.
    J.Z.Y. Chen, Soft Matter. 9, 10921 (2013)ADSCrossRefGoogle Scholar
  51. 51.
    D. de las Heras, L. Mederos, E. Velasco, Liq. Cryst. 37, 45 (2010)CrossRefGoogle Scholar
  52. 52.
    D. de las Heras, E. Velasco, Soft Matter. 10, 1758 (2014)ADSCrossRefGoogle Scholar
  53. 53.
    X. Yao, H. Zhang, J.Z.Y. Chen, Phys. Rev. E. 97, 052707 (2018)ADSCrossRefGoogle Scholar
  54. 54.
    C. Tsakonas, A.J. Davidson, C.V. Brown, N.J. Mottram, Appl. Phys. Lett. 90, 111913 (2007)ADSCrossRefGoogle Scholar
  55. 55.
    M. Robinson, C. Luo, P.E. Farrell, R. Erban, A. Majumdar, Liq. Cryst. 44, 2267 (2017)CrossRefGoogle Scholar
  56. 56.
    C. Luo, A. Majumdar, R. Erban, Phys. Rev. E. 85, 061702 (2012)ADSCrossRefGoogle Scholar
  57. 57.
    X. Zheng, P.P. Muhory, Phys. Rev. E. 75, 061709 (2007)ADSCrossRefGoogle Scholar
  58. 58.
    A. Keller, S. Heinrich, H. Niederreiter. Monte Carlo and Quasi-Monte Carlo Methods (Springer, Berlin, 2006)zbMATHGoogle Scholar
  59. 59.
    M.P. Allen, LNP. 704, 191 (2006)ADSGoogle Scholar
  60. 60.
    S. Hashemi, Braz. J. Phys. 49, 44 (2018)ADSCrossRefGoogle Scholar
  61. 61.
    O.D. Lavrentovich, Liq. Cryst. 24, 117 (1998)CrossRefGoogle Scholar
  62. 62.
    R. Rosso, E.G. Virga, S. Kralj, CONTINUUM MECH THERM. 24, 643 (2012)ADSCrossRefGoogle Scholar
  63. 63.
    R. Repnik, L. Mathelitsch, M. Svetec, S. Kralj, Eur. J. Phys. 24, 481 (2003)CrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2019

Authors and Affiliations

  1. 1.Department of PhysicsSalman Farsi University of KazerunKazerunIran

Personalised recommendations