Advertisement

Lattice Oscillator Model on Noncommutative Space: Eigenvalues Problem for the Perturbation Theory

  • Dine Ousmane SamaryEmail author
  • Sêcloka Lazare Guedezounme
  • Antonin Danvidé Kanfon
Particles and Fields
  • 11 Downloads

Abstract

Harmonic oscillator in noncommutative two-dimensional lattice is investigated. Using the properties of non-differential calculus and its applications to quantum mechanics, we provide the eigenvalues and eigenfunctions of the corresponding Hamiltonian. First, we consider the case of ordinary quantum mechanics, and we point out the thermodynamic properties of the model. Then we consider the same question when both coordinates and momenta are noncommutative.

Keywords

Harmonic oscillator in noncommutative Lattice theory Perturbation theory 

Notes

Acknowledgments

D.O.S research at the Max-Planck Institute is supported by the Alexander von Humboldt foundation. S.L.G thanks the Max-Planck Institute for the invitation and financial support.

References

  1. 1.
    P. Jizba, H. Kleinert, F. Scardigli, J. Phys. Conf. Ser. 306, 012026 (2011).  https://doi.org/10.1088/1742-6596/306/1/012026 CrossRefGoogle Scholar
  2. 2.
    P. Jizba, H. Kleinert, F. Scardigli, AIP Conf. Proc. 1446, 181 (2012).  https://doi.org/10.1063/1.4727995 ADSCrossRefGoogle Scholar
  3. 3.
    P. Jizba, H. Kleinert, F. Scardigli, Phys. Rev. D. 81, 084030 (2010).  https://doi.org/10.1103/PhysRevD.81.084030. arXiv:0912.2253 [hep-th]ADSCrossRefGoogle Scholar
  4. 4.
    J.A. Wheeler, K.W. Ford. (New York, W W Norton and Co Inc., 2018)Google Scholar
  5. 5.
    K.G. Wilson, Phys. Rev, D. 10, 2445 (1974).  https://doi.org/10.1103/PhysRevD.10.2445 Google Scholar
  6. 6.
    A. Amador, J.S. Hoye, K. Olaussen, arXiv:1610.05284 [hep-th]
  7. 7.
    M.R. Douglas, N.A. Nekrasov, Rev. Mod. Phys. 73, 977 (2001).  https://doi.org/10.1103/RevModPhys.73.977 [hep-th/0106048]ADSCrossRefGoogle Scholar
  8. 8.
    N. Seiberg, E. Witten, JHEP. 9909, 032 (1999).  https://doi.org/10.1088/1126-6708/1999/09/032 [hep-th/9908142]ADSCrossRefGoogle Scholar
  9. 9.
    R.J. Szabo, . Phys. Rept. 378, 207 (2003).  https://doi.org/10.1016/S0370-1573(03)00059-0 [hep-th/0109162]ADSCrossRefGoogle Scholar
  10. 10.
    S. Hellerman, M. Van Raamsdonk, JHEP. 0110, 039 (2001).  https://doi.org/10.1088/1126-6708/2001/10/039 [hep-th/0103179]ADSCrossRefGoogle Scholar
  11. 11.
    P.A. Horvathy, hep-th/0307175Google Scholar
  12. 12.
    O.F. Dayi, A. Jellal, J. Math. Phys. 43, 4592 (2002).  https://doi.org/10.1063/1.1504484 [hep-th/0111267]ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    F.G. Scholtz, B. Chakraborty, S. Gangopadhyay, J. Govaerts, J. Phys. A. 38, 9849 (2005).  https://doi.org/10.1088/0305-4470/38/45/008 [cond-mat/0509331 [cond-mat.mes-hall]]ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    S. Doplicher, K. Fredenhagen, J.E. Roberts, Commun. Math. Phys. 172, 187 (1995). [hep-th/0303037]ADSCrossRefGoogle Scholar
  15. 15.
    D.J. Gross, P.F. Mende, Nucl. Phys. B. 303, 407 (1988).  https://doi.org/10.1016/0550-3213(88)90390-2 ADSCrossRefGoogle Scholar
  16. 16.
    E.M.F. Curado, M.A. Rego-Monteiro, H.N. Nazareno, . Phys. Rev. A. 64, 012105 (2001).  https://doi.org/10.1103/PhysRevA.64.012105 [hep-th/0012244]ADSCrossRefGoogle Scholar
  17. 17.
  18. 18.
    T.G. Dedovich, M.V. Tokarev, Phys. Part. Nucl. Lett. 13 (2), 169 (2016).  https://doi.org/10.1134/S1547477116020060 CrossRefGoogle Scholar
  19. 19.
    J. Th‘urigen, arXiv:1510.08706 [gr-qc]
  20. 20.
    J.H. He, Int. J. Theor. Phys. 53(11), 3698 (2014).  https://doi.org/10.1007/s10773-014-2123-8 CrossRefGoogle Scholar
  21. 21.
    M.N. Chernodub, S. Ouvry, Phys. Rev. E. 92(4), 042102 (2015).  https://doi.org/10.1103/PhysRevE.92.042102. arXiv:1504.02269 [cond-mat.stat-mech]ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    J. Jurkiewicz, J. Wosiek, Nucl. Phys. B. 135, 416 (1978).  https://doi.org/10.1016/0550-3213(78)90346-2 ADSCrossRefGoogle Scholar
  23. 23.
    S.D. Drell, M. Weinstein, S. Yankielowicz, Phys. Rev. D. 16, 1769 (1977).  https://doi.org/10.1103/PhysRevD.16.1769 ADSCrossRefGoogle Scholar
  24. 24.
    C. Bastos, A.E. Bernardini, O. Bertolami, N. Costa Dias, J. Nuno Prata, Phys. Rev. D. 93(10), 104055 (2016). arXiv:1512.03792 [quant-ph]ADSCrossRefGoogle Scholar
  25. 25.
    J. Jurkiewicz, J. Wosiek, Nucl. Phys. B. 145, 445 (1978).  https://doi.org/10.1016/0550-3213(78)90095-0 ADSCrossRefGoogle Scholar
  26. 26.
  27. 27.
    M.C. Gutzwiller, Annals Phys. 133, 304 (1981).  https://doi.org/10.1016/0003-4916(81)90253-0 ADSCrossRefGoogle Scholar
  28. 28.
    H.S. Snyder, Phys. Rev. 71, 38 (1947).  https://doi.org/10.1103/PhysRev.71.38 ADSCrossRefGoogle Scholar
  29. 29.
  30. 30.
    C.P. Sun, H.C. Fu, J. Phys. A. 22, L983 (1989).  https://doi.org/10.1088/0305-4470/22/21/001 CrossRefGoogle Scholar
  31. 31.
    E.G. Floratos, Nucl. Phys. Proc. Suppl. 22A, 144 (1991).  https://doi.org/10.1016/0920-5632(91)90361-H ADSCrossRefGoogle Scholar
  32. 32.
    M. Chaichian, D. Ellinas, P. Kulish, Phys. Rev. Lett. 65, 980 (1990).  https://doi.org/10.1103/PhysRevLett.65.980 ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    E. Celeghini, T.D. Palev, M. Tarlini, Mod. Phys. Lett. B. 5, 187 (1991).  https://doi.org/10.1142/S021798499100023X ADSCrossRefGoogle Scholar
  34. 34.
    W.B. Schmidke, J. Wess, B. Zumino, Z. Phys. C. 52, 471 (1991).  https://doi.org/10.1007/BF01559443 ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
  36. 36.
    D.V. Boulatov, Int. J. Mod, Phys. A. 8, 3139 (1993).  https://doi.org/10.1142/S0217751X93001259 [hep-th/9210032]Google Scholar
  37. 37.
  38. 38.
    D. Mehta, A. Sternbeck, L. von Smekal, A.G. Williams, PoS QCD -TNT09, 025. arXiv:0912.0450 [hep-lat] (2009)
  39. 39.
    D. Mehta, M. Kastner, Annals Phys. 326, 1425 (2011).  https://doi.org/10.1016/j.aop.2010.12.016. arXiv:1010.5335 [cond-mat.stat-mech]ADSCrossRefGoogle Scholar
  40. 40.
    Y. Li, Phys. Rev. B. 91(19), 195133 (2015).  https://doi.org/10.1103/PhysRevB.91.195133. arXiv:1410.6189 [cond-mat.str-el]ADSCrossRefGoogle Scholar
  41. 41.
    H. Atakis, M.Ö. Oktel, Phys. Rev. A. 88, 033612 (2013).  https://doi.org/10.1103/PhysRevA.88.033612 ADSCrossRefGoogle Scholar
  42. 42.
    A. Cucchieri, T. Mendes, Phys. Rev. D. 88, 114501 (2013).  https://doi.org/10.1103/PhysRevD.88.114501. arXiv:1308.1283 [hep-lat]ADSCrossRefGoogle Scholar
  43. 43.
    M. Bhatia, P.N. Swamy, Int. J. Theor. Phys. 50, 1687 (2011).  https://doi.org/10.1007/s10773-011-0677-2. arXiv:1011.2544 [quant-ph]CrossRefGoogle Scholar
  44. 44.
    M. Bojowald, A. Kempf, Phys. Rev. D. 86, 085017 (2012).  https://doi.org/10.1103/PhysRevD.86.085017. arXiv:1112.0994 [hep-th]ADSCrossRefGoogle Scholar
  45. 45.
    A. Kempf, J. Math. Phys. 38, 1347 (1997).  https://doi.org/10.1063/1.531814 [hep-th/9602085]ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    A. Kempf, Phys. Rev. D. 63, 083514 (2001).  https://doi.org/10.1103/PhysRevD.63.083514 [astro-ph/0009209]ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    A. Kempf, IN *Erice, From the Planck length to the Hubble radius* 613-622 [hep-th/9810215] (1998)Google Scholar
  48. 48.
    A. Kempf, hep-th/9612082Google Scholar
  49. 49.
    A. Kempf, G. Mangano, Phys. Rev. D. 55, 7909 (1997).  https://doi.org/10.1103/PhysRevD.55.7909 [hep-th/9612084]ADSCrossRefGoogle Scholar
  50. 50.
    A. Kempf, J. Phys. A. 30, 2093 (1997).  https://doi.org/10.1088/0305-4470/30/6/030 [hep-th/9604045]ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    C. Bastos, A.E. Bernardini, O. Bertolami, N. Costa Dias, J. Nuno Prata, J. Phys. Conf. Ser. 626 (1), 012050 (2015).  https://doi.org/10.1088/1742-6596/626/1/012050. arXiv:1411.2146 [quant-ph]CrossRefGoogle Scholar
  52. 52.
    C. Bastos, A. Bernardini, O. Bertolami, N. Costa Dias, J. Nuno Prata, . Phys. Rev. D. 90 (4), 045023 (2014).  https://doi.org/10.1103/PhysRevD.90.045023. arXiv:1406.0740 [quant-ph]ADSCrossRefGoogle Scholar
  53. 53.
    C. Bastos, A.E. Bernardini, O. Bertolami, N. Costa Dias, J. Nuno Prata, Phys. Rev. A. 89 (4), 042112 (2014).  https://doi.org/10.1103/PhysRevA.89.042112. arXiv:1310.4762 [quant-ph]ADSCrossRefGoogle Scholar
  54. 54.
    J. Gamboa, M. Loewe, F. Mendez, J.C. Rojas, Mod. Phys. Lett. A. 16, 2075 (2001).  https://doi.org/10.1142/S0217732301005345 [hep-th/0104224]ADSCrossRefGoogle Scholar
  55. 55.
    A. Hatzinikitas, I. Smyrnakis, J. Math. Phys. 43, 113 (2002).  https://doi.org/10.1063/1.1416196 [hep-th/0103074]ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    V.P. Nair, A.P. Polychronakos, Phys. Lett. B. 505, 267 (2001).  https://doi.org/10.1016/S0370-2693(01)00339-2 [hep- th/0011172]ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    M. Maceda, A. Macias, Phys. Rev. D. 79, 087703 (2009).  https://doi.org/10.1103/PhysRevD.79.087703 ADSCrossRefGoogle Scholar
  58. 58.
    A.E. Bernardini, Eur. Phys. J. C. 46, 113 (2006).  https://doi.org/10.1140/epjc/s2006-02502-2 [hep-th/0606240]ADSCrossRefGoogle Scholar
  59. 59.
    C. Bastos, A.E. Bernardini, O. Bertolami, N. Costa Dias, J. Nuno Prata,. Phys. Rev. D. 88 (8), 085013 (2013).  https://doi.org/10.1103/PhysRevD.88.085013. arXiv:1305.5792 [quant-ph]ADSCrossRefGoogle Scholar
  60. 60.
    P.R. Giri, P. Roy, Eur. Phys. J. C. 57, 835 (2008).  https://doi.org/10.1140/epjc/s10052-008-0705-4. arXiv:0803.4090 [hep-th]ADSCrossRefGoogle Scholar
  61. 61.
    S. Dulat, K. Li, Chin. Phys. C. 32, 92 (2008).  https://doi.org/10.1088/1674-1137/32/2/003. arXiv:0802.1118 [math-ph]ADSCrossRefGoogle Scholar
  62. 62.
    A. Halder, S. Gangopadhyay, Int. J. Theor. Phys. 56(6), 1831 (2017). arXiv:1609.06580 [hep-th]CrossRefGoogle Scholar
  63. 63.
    J.F.G. Santos, A.E. Bernardini, C. Bastos, Physica. 438, 340 (2015).  https://doi.org/10.1016/j.physa.2015.07.009. arXiv:1411.2941 [quant-ph]MathSciNetCrossRefGoogle Scholar
  64. 64.
    J.F.G. Santos, A.E. Bernardini, Eur. Phys. J. Plus. 132(6), 260 (2017).  https://doi.org/10.1140/epjp/i2017-11538-1. arXiv:1606.05592 [quant-ph]CrossRefGoogle Scholar
  65. 65.
    A.E. Bernardini, O. Bertolami, Phys. Rev. A. 88(1), 012101 (2013).  https://doi.org/10.1103/PhysRevA.88.012101. arXiv:1303.0685 [quant-ph]ADSCrossRefGoogle Scholar
  66. 66.
    I. Jabbari, A. Jahan, Z. Riazi, Turk. J. Phys. 33, 149 (2009). arXiv:1201.0827 [hep-th]Google Scholar
  67. 67.
    A. Jahan, Braz. J. Phys. 38, 144 (2008). arXiv:1208.0137 [hep-th]ADSCrossRefGoogle Scholar
  68. 68.
    J.M. Seddon, J.D. Gale. Thermodynamics and statistical mechanics (Royal Society of Chemistry, Cambridge CB4OWF, 2001)Google Scholar

Copyright information

© Sociedade Brasileira de Física 2019

Authors and Affiliations

  1. 1.International Chair in Mathematical Physics and Applications (ICMPA-UNESCO Chair)University of Abomey-CalaviCotonouRepublic of Benin
  2. 2.Max Planck Institute for Gravitational PhysicsAlbert Einstein InstitutePotsdamGermany

Personalised recommendations