Advertisement

Spontaneous Radiation of a Two-Level System Confined in a Reflective Spherical Shell Quantum Dot

Spontaneous Radiation of a Two-Level System in a Spherical Shell
  • F. N. LimaEmail author
  • R. P. A. Lima
  • M. L. Lyra
Atomic Physics
  • 41 Downloads

Abstract

Using a first-order time-dependent perturbation theory, we calculate the spontaneous emission rate of a two-level system trapped between perfectly reflecting concentric spheres. The emitter is represented by a two-level monopole coupled to a Hermitian massless scalar field satisfying Dirichlet boundary conditions in such quantum-confined low-dimensional structure. We obtained the appropriate Green’s function evaluated in worldline of the atom which incorporates contributions from an infinite set of variable image charges. We provide an analytical expression for the decay rate to investigate the radiation process of the trapped atomic system. We perform a broad analysis of the dependence of the decay rate for different relations between the radii of spheres and the emitted radiation energy. We unveil regimes of strong suppression of the spontaneous emission rate as well as the development of irregular oscillations as a function of the quantum of emitted energy.

Keywords

Spontaneous radiation Cavity quantum electrodynamics Perturbation theory Scalar field theory 

Notes

Funding Information

This study is partially and financiall supported by the Brazilian research agencies CNPq and CAPES, as well as from the Alagoas State research agency FAPEAL. FNL was supported by the program CAPES/DINTER/IFPI/UFAL/23038.000902/2016-90.

References

  1. 1.
    E. Betzig, R.J. Chichester, Single molecules observed by near-field scanning optical microscopy, Science (5138).  https://doi.org/10.1126/science.262.5138.1422 (1422)
  2. 2.
    T.H. Taminiau, F.D. Stefani, F.B. Segerink, N.F. van Hulst, Optical antennas direct single-molecule emission, Nat. Photonics (4), 234.  https://doi.org/10.1038/nphoton.2008.32
  3. 3.
    S. Kühn, U. Håkanson, L. Rogobete, V. Sandoghdar, Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna, Phys. Rev. Lett. (1), 017402.  https://doi.org/10.1103/PhysRevLett.97.017402
  4. 4.
    M. Khajavikhan, A. Simic, M. Katz, J.H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, Y. Fainman, Thresholdless nanoscale coaxial lasers, Nature (7384), 204.  https://doi.org/10.1038/nature10840
  5. 5.
    M. Frimmer, A.F. Koenderink, Spontaneous emission control in a tunable hybrid photonic system, Phys. Rev. Lett. (21), 217405.  https://doi.org/10.1103/PhysRevLett.110.217405
  6. 6.
    E.M. Purcell, Spontaneous emission probabilities at radio frequencies, Phys. Rev. (11-12), 681.  https://doi.org/10.1103/PhysRev.69.674
  7. 7.
    J. Zhang, M. Wubs, P. Ginzburg, G. Wurtz, A.V. Zayats, Transformation quantum optics: designing spontaneous emission using coordinate transformations. J. Opt. 18, 044029 (2016).  https://doi.org/10.1088/2040-8978/18/4/044029 ADSCrossRefGoogle Scholar
  8. 8.
    P. Stehle, Atomic radiation in a cavity, Phys. Rev. A (1), 102.  https://doi.org/10.1103/PhysRevA.2.102
  9. 9.
    G. Barton, Quantum electrodynamics of spinless particles between conducting plates, Proceedings of the Royal Society A: Mathematical, Phys. Eng. Sci. (1541), 251.  https://doi.org/10.1098/rspa.1970.0208
  10. 10.
    M.R. Philpott, Fluorescence from molecules between mirrors, Chem. Phys. Lett. (3), 435.  https://doi.org/10.1016/0009-2614(73)80399-9
  11. 11.
    P. Milonni, P. Knight, Spontaneous emission between mirrors, Opt. Commun. (2), 119.  https://doi.org/10.1016/0030-4018(73)90239-3
  12. 12.
    P. Goy, J.M. Raimond, M. Gross, S. Haroche, Observation of cavity-enhanced single-atom spontaneous emission, Phys. Rev. Lett. (24), 1903.  https://doi.org/10.1103/PhysRevLett.50.1903
  13. 13.
    R.G. Hulet, E.S. Hilfer, D. Kleppner, Inhibited spontaneous emission by a Rydberg atom, Phys. Rev. Lett. (20), 2137.  https://doi.org/10.1103/PhysRevLett.55.2137
  14. 14.
    W. Jhe, A. Anderson, E. A. Hinds, D. Meschede, L. Moi, S. Haroche, Suppression of spontaneous decay at optical frequencies: test of vacuum-field anisotropy in confined space, Phys. Rev. Lett. (14), 1497.  https://doi.org/10.1103/PhysRevLett.58.1497.2
  15. 15.
    H.M. França, T.W. Marshall, E. Santos, Spontaneous emission in confined space according to stochastic electrodynamics, Phys. Rev. A (9), 6436.  https://doi.org/10.1103/PhysRevA.45.6436
  16. 16.
    L.H. Ford, N.F. Svaiter, M.L. Lyra, Radiative properties of a two-level system in the presence of mirrors. Phys. Rev. A. 49(2), 1378 (1994).  https://doi.org/10.1103/PhysRevA.49.1378 ADSCrossRefGoogle Scholar
  17. 17.
    P.S. Davids, P.B. Lerner, Suppression of atomic radiation in a cylindrical nanocavity, Zeitschrift fr Physik D Atoms, Mol. Clusters (3), 203.  https://doi.org/10.1007/BF01437312
  18. 18.
    M. Kauranen, Y. Van Rompaey, J.J. Maki, A. Persoons, Nonvanishing field between a dipole oscillator and a reflecting boundary during suppression of dipole radiation, Phys. Rev. Lett. (5), 952.  https://doi.org/10.1103/PhysRevLett.80.952
  19. 19.
    M.J.A. de Dood, L.H. Slooff, A. Polman, A. Moroz, A. van Blaaderen, Modified spontaneous emission in erbium-doped SiO[sub 2] spherical colloids, Appl. Phys. Lett. (22), 3585.  https://doi.org/10.1063/1.1419033
  20. 20.
    H.T. Dung, L. Knöll, D.G. Welsch, Decay of an excited atom near an absorbing microsphere, Phys. Rev. A (1), 013804.  https://doi.org/10.1103/PhysRevA.64.013804
  21. 21.
    K.J. Vahala, Optical microcavities, Nature (6950), 839.  https://doi.org/10.1038/nature01939
  22. 22.
    V.V. Klimov, M. Ducloy, V.S. Letokhov, Spontaneous emission rate and level shift of an atom inside a dielectric microsphere, J. Mod. Opt. (3), 549.  https://doi.org/10.1080/09500349608232764
  23. 23.
    A. Moroz, Spectroscopic properties of a two-level atom interacting with a complex spherical nanoshell, Chem. Phys. (1), 1.  https://doi.org/10.1016/j.chemphys.2005.05.003
  24. 24.
    R. Carminati, J.J. Greffet, C. Henkel, J. Vigoureux, Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle, Opt. Commun. (2), 368.  https://doi.org/10.1016/j.optcom.2005.12.009
  25. 25.
    H. Walther, B.T.H. Varcoe, B.G. Englert, T. Becker, Cavity quantum electrodynamics, Rep. Prog. Phys. (5), 1325.  https://doi.org/10.1088/0034-4885/69/5/R02
  26. 26.
    V. Yannopapas, N.V. Vitanov, Spontaneous emission of a two-level atom placed within clusters of metallic nanoparticles, J. Phys. Condens. Matter (9), 096210.  https://doi.org/10.1088/0953-8984/19/9/096210
  27. 27.
    K.K. Pukhov, T.T. Basiev, Y.V. Orlovskii, Spontaneous emission in dielectric nanoparticles, JETP Lett. (1), 12.  https://doi.org/10.1134/S0021364008130043
  28. 28.
    L. Ford, T.A. Roman, Effects of vacuum fluctuation suppression on atomic decay rates, Ann. Phys. (8), 2294.  https://doi.org/10.1016/j.aop.2011.04.004
  29. 29.
    F.A. Inam, T. Gaebel, C. Bradac, L. Stewart, M.J. Withford, J.M. Dawes, J.R. Rabeau, M.J. Steel, Modification of spontaneous emission from nanodiamond colour centres on a structured surface, New J. Phys. (7), 073012.  https://doi.org/10.1088/1367-2630/13/7/073012
  30. 30.
    C. Sauvan, J.P. Hugonin, I.S. Maksymov, P. Lalanne, Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators, Phys. Rev. Lett. (23), 237401.  https://doi.org/10.1103/PhysRevLett.110.237401
  31. 31.
    S. Haroche, Controlling photons in a box and exploring the quantum to classical boundary, Ann. Phys. (10-11), 753.  https://doi.org/10.1002/andp.201300737
  32. 32.
    Z. Mohammadi, F. Kheirandish, Energy-level shifts and the decay rate of an atom in the presence of a conducting wedge, Phys. Rev. A (6), 062118.  https://doi.org/10.1103/PhysRevA.92.062118
  33. 33.
    A. Bienfait, J.J. Pla, Y. Kubo, X. Zhou, M. Stern, C.C. Lo, C.D. Weis, T. Schenkel, D. Vion, D. Esteve, J.J.L. Morton, P. Bertet, Controlling spin relaxation with a cavity, Nature (7592), 74.  https://doi.org/10.1038/nature16944
  34. 34.
    H. Xiong, M. Scully, M. Zubairy, Correlated spontaneous emission laser as an entanglement amplifier, Phys. Rev. Lett. (2), 023601.  https://doi.org/10.1103/PhysRevLett.94.023601
  35. 35.
    E. Arias, J.G. Dueñas, G. Menezes, N.F. Svaiter, Boundary effects on radiative processes of two entangled atoms, J. High Energy Phys. (7), 147.  https://doi.org/10.1007/JHEP07(2016)147
  36. 36.
    Y. Yang, J. Hu, H. Yu, Entanglement dynamics for uniformly accelerated two-level atoms coupled with electromagnetic vacuum fluctuations, Phys. Rev. A (3), 032337.  https://doi.org/10.1103/PhysRevA.94.032337
  37. 37.
    G. Menezes, N.F. Svaiter, Radiative processes of uniformly accelerated entangled atoms, Phys. Rev. A (5), 052117.  https://doi.org/10.1103/PhysRevA.93.052117
  38. 38.
    R.P.A. Lima, F.N. Lima, M.L. Lyra, Spontaneous decay of a two-level system close to a perfectly reflecting sphere. Ann. Phys. 372, 162 (2017).  https://doi.org/10.1016/j.aop.2017.01.017 ADSCrossRefGoogle Scholar
  39. 39.
    L. Dong, A. Sugunan, J. Hu, S. Zhou, S. Li, S. Popov, M.S. Toprak, A.T. Friberg, M. Muhammed, Photoluminescence from quasi-type-II spherical CdSe-CdS core-shell quantum dots. Appl. Opt. 52(1), 105 (2013).  https://doi.org/10.1364/AO.52.000105 ADSCrossRefGoogle Scholar
  40. 40.
    C. Liao, K. Fan, R. Xu, H. Zhang, C. Lu, Y. Cui, J. Zhang, Laser-annealing-made amplified spontaneous emission of “giant” CdSe/CdS core/shell nanocrystals transferred from bulk-like shell to quantum-confined core. Photon. Res. 3(5), 200 (2015).  https://doi.org/10.1364/PRJ.3.000200 CrossRefGoogle Scholar
  41. 41.
    M.S.R. Miltão, Casimir energy for a double spherical shell: a global mode sum approach, Phys. Rev. D (6), 065023.  https://doi.org/10.1103/PhysRevD.78.065023
  42. 42.
    W.G. Unruh, Notes on black-hole evaporation, Phys. Rev. D (4), 870.  https://doi.org/10.1103/PhysRevD.14.870
  43. 43.
    B. DeWitt, in . General relativity: an Einstein centenary survey, ed. by S. Hawking, W. Israel. (Cambridge University Press), chap. Quantum gr, p. 944, (1979)Google Scholar
  44. 44.
    P.C.W. Davies, Z.X. Liu, A.C. Ottewill, Particle detectors in the presence of boundaries, Classical and Quantum Gravity (7), 1041.  https://doi.org/10.1088/0264-9381/6/7/010
  45. 45.
    B.F. Svaiter, N.F. Svaiter, Inertial and noninertial particle detectors and vacuum fluctuations, Phys. Rev. D (12), 5267.  https://doi.org/10.1103/PhysRevD.46.5267
  46. 46.
    B.F. Svaiter, N.F. Svaiter, Quantum processes: stimulated and spontaneous emission near cosmic strings, Classical and Quantum Gravity (2), 347.  https://doi.org/10.1088/0264-9381/11/2/007
  47. 47.
    F. Benatti, R. Floreanini, Entanglement generation in uniformly accelerating atoms: Reexamination of the Unruh effect, Phys. Rev. A (1), 012112.  https://doi.org/10.1103/PhysRevA.70.012112
  48. 48.
    J. Zhang, H. Yu, Unruh effect and entanglement generation for accelerated atoms near a reflecting boundary, Phys. Rev. D (10), 104014.  https://doi.org/10.1103/PhysRevD.75.104014
  49. 49.
    A.G.S. Landulfo, G.E.A. Matsas, Sudden death of entanglement and teleportation fidelity loss via the Unruh effect, Phys. Rev. A (3), 032315.  https://doi.org/10.1103/PhysRevA.80.032315
  50. 50.
    J. Doukas, B. Carson, Entanglement of two qubits in a relativistic orbit, Phys. Rev. A (6), 062320.  https://doi.org/10.1103/PhysRevA.81.062320
  51. 51.
    D.C.M. Ostapchuk, S.Y. Lin, R.B. Mann, B.L. Hu, Entanglement dynamics between inertial and non-uniformly accelerated detectors, J. High Energy Phys. (7), 72.  https://doi.org/10.1007/JHEP07(2012)072
  52. 52.
    X. Liu, Z. Tian, J. Wang, J. Jing, Radiative process of two entanglement atoms in de Sitter spacetime, Phys. Rev. D (10), 105030.  https://doi.org/10.1103/PhysRevD.97.105030
  53. 53.
    J.T. Chen, H.C. Shieh, J.J. Tsai, J.W. Lee, Equivalence between Trefftz method and method of fundamental solutions for the Green’s function of concentric spheres using the addition theorem and image concept. WIT Transactions on Modelling and Simulation. 49, 23 (2009).  https://doi.org/10.2495/BE090031 MathSciNetCrossRefGoogle Scholar
  54. 54.
    P. Langlois, Causal particle detectors and topology, Ann. Phys. pp. 2027–2070.  https://doi.org/10.1016/j.aop.2006.01.013
  55. 55.
    P.C.W. Davies, A.C. Ottewill, Detection of negative energy: 4-dimensional examples, Phys. Rev. D (1), 104014.  https://doi.org/10.1103/PhysRevD.65.104014
  56. 56.
    N. Megier, D. Chruściński, J. Piilo, W.T. Strunz, Eternal non-Markovianity: from random unitary to Markov chain realisations, Sci. Rep. (1), 6379.  https://doi.org/10.1038/s41598-017-06059-5
  57. 57.
    D. Moustos, C. Anastopoulos, Non-Markovian time evolution of an accelerated qubit, Phys. Rev. D (2), 025020.  https://doi.org/10.1103/PhysRevD.95.025020
  58. 58.
    G. Menezes, N.F. Svaiter, Vacuum fluctuations and radiation reaction in radiative processes of entangled states, Phys. Rev. A (6), 062131.  https://doi.org/10.1103/PhysRevA.92.062131

Copyright information

© Sociedade Brasileira de Física 2019

Authors and Affiliations

  1. 1.Instituto Federal do PiauíSão Raimundo NonatoBrazil
  2. 2.GFTC and GISC, Instituto de FísicaUniversidade Federal de AlagoasMaceióBrazil
  3. 3.GFTC, Instituto de FísicaUniversidade Federal de AlagoasMaceióBrazil

Personalised recommendations