The Double-Slit Electron Diffraction Experiment with Aharonov-Bohm Phase Effect Revisited and the Divergence in its Asymptotic Form
- 4 Downloads
Abstract
In this work, we consider the experiment of diffraction and interference of electrons through a double slit added to the Aharonov-Bohm phase effect. We applied the asymptotic Fresnel functions to one term of the interference process obtaining an expression for the intensity with divergence for certain values of the flow parameter. This led us to an expression incapable of recovering the asymmetry effects of the diffraction pattern arising from the AB phase, as might be expected, since purely quantum effects cannot be classically reproduced.
Keywords
Diffraction Aharonov-Bohm effect Path integrals Fresnel functionsNotes
Acknowledgments
We wish to thank Alan Johnny Romanel Ambrozio for helpful communication during the preparation of this work. Simulations were performed in Mathematica Version 11.3, Wolfram Research, Champaign, IL.
Funding Information
This work has received partial financial supporting from CNPq (Brazil), CAPES (Brazil), and FAPES (Brazil).
References
- 1.W. Ehrenberg, R. Siday, The refractive index in electron optics and the principles of dynamics. Proc. Phys. Soc. London, Sect. B. 62, 8 (1949)ADSCrossRefzbMATHGoogle Scholar
- 2.Y. Aharonov, D. Bohm, Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 3.Y. Aharonov, D. Bohm, Further considerations on electromagnetic potentials in the quantum theory. Phys. Rev. 123, 1511–1524 (1961)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 4.M. Bright, D. Singleton, Time-dependent non-Abelian Aharonov-Bohm effect. Phys. Rev. 91, 085010 (2015)MathSciNetGoogle Scholar
- 5.T.T. Wu, C.N. Yang, Concept of nonintegrable phase factors and global formulation of gauge fields. Phys. Rev. D. 12, 3845–3857 (1975)ADSMathSciNetCrossRefGoogle Scholar
- 6.S. Olariu, I.I. Popescu, The quantum effects of electromagnetic fluxes. Rev. Mod. Phys. 57, 339–436 (1985)ADSCrossRefGoogle Scholar
- 7.B.E. Allman, A. Cimmino, A.G. Klein, G.I. Opat, H. Kaiser, S.A. Werner, Scalar Aharonov-Bohm experiment with neutrons. Rev. Mod. Phys. 68, 2409–2412 (1992)Google Scholar
- 8.B.E. Allman, A. Cimmino, A.G. Klein, G.I. Opat, H. Kaiser, S.A. Werner, Erratum: scalar Aharonov-Bohm experiment with neutrons [Phys. Rev. Lett. 68, 2409 (1992)]. Phys. Rev. Lett. 70, 250–250 (1993)Google Scholar
- 9.C. Gerry, V. Singh, Feynman path-integral approach to the Aharonov-Bohm effect. Phys. Rev. D. 20, 2550–2554 (1979)ADSCrossRefGoogle Scholar
- 10.M.V. Berry, Exact Aharonov-Bohm wavefunction obtained by applying Dirac’s magnetic phase factor. Eur. J. Phys. 1, 240 (1980)CrossRefGoogle Scholar
- 11.X. Zhu, W.C. Henneberger, Some observations on the dynamics of the Aharonov-Bohm effect. J. Phys. A Math. Gen. 23, 3983 (1990)ADSMathSciNetCrossRefGoogle Scholar
- 12.D. Shapiro, W.C. Henneberger, The Aharonov-Bohm effect in double- and single-slit diffraction. J. Phys. A Math. Gen. 22, 3605 (1989)ADSCrossRefGoogle Scholar
- 13.N. Osakabe, T. Matsuda, T. Kawasaki, J. Endo, A. Tonomura, S. Yano, H. Yamada, Experimental confirmation of Aharonov-Bohm effect using a toroidal magnetic field confined by a superconductor. Phys. Rev. A. 34, 815–822 (1986)ADSCrossRefGoogle Scholar
- 14.A. Tonomura, T. Matsuda, R. Suzuki, A. Fukuhara, N. Osakabe, H. Umezaki, J. Endo, K. Shinagawa, Y. Sugita, H. Fujiwara, Observation of Aharonov-Bohm effect by electron holography. Phys. Rev. Lett. 48, 1443–1446 (1982)ADSCrossRefGoogle Scholar
- 15.A. Tonomura, N. Osakabe, T. Matsuda, T. Kawasaki, J. Endo, S. Yano, H. Yamada, Evidence for Aharonov-Bohm effect with magnetic field completely shielded from electron wave. Phys. Rev. Lett. 56, 792–795 (1986)ADSCrossRefGoogle Scholar
- 16.M. Ballesteros, R. Weder, The Aharonov–Bohm effect and Tonomura others. experiments: rigorous results. J. Math. Phys. 50, 122108 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 17.M.V. Berry, Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A: Mathematical, Physical and Engineering Sciences. 392, 45–57 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
- 18.Y. Aharonov, J. Anandan, Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 58, 1593–1596 (1987)ADSMathSciNetCrossRefGoogle Scholar
- 19.J. Samuel, R. Bhandari, General setting for Berry’s phase. Phys. Rev. Lett. 60, 2339–2342 (1988)ADSMathSciNetCrossRefGoogle Scholar
- 20.S. Pancharatnam, Generalized theory of interference, and its applications. Proc. Indiana Acad. Sci. Section A. 44, 247–262 (1956)MathSciNetCrossRefGoogle Scholar
- 21.J. Anandan, Non-adiabatic non-abelian geometric phase. Phys. Lett. A. 133, 171–175 (1988)ADSMathSciNetCrossRefGoogle Scholar
- 22.M. Beau, Feynman path integral approach to electron diffraction for one and two slits: analytical results. Eur. J. Phys. 33, 1023 (2012)CrossRefzbMATHGoogle Scholar
- 23.D.H. Kobe, Aharonov-Bohm effect revisited. Ann. Phys. 123, 381–410 (1979)ADSCrossRefGoogle Scholar
- 24.P. Sancho, The two-particle two-slit experiment. Eur. Phys. J. D. 68, 34 (2014)ADSCrossRefGoogle Scholar
- 25.D.H. Kobe, V.C. Aguilera-Navarro, R.M. Ricotta, Asymmetry of the Aharonov-Bohm diffraction pattern and Ehrenfest’s theorem. Phys. Rev. A. 45, 6192–6197 (1992)ADSCrossRefGoogle Scholar
- 26.V.C. Aguilera-Navarro, R.M. Quick, Limiting analytic form for an Aharonov-Bohm diffraction pattern. Phys. Rev. A. 50, 2885–2892 (1994)ADSCrossRefGoogle Scholar
- 27.K. Bradonjić, J.D. Swain, Quantum measurement and the Aharonov–Bohm effect with superposed magnetic fluxes. Phys. Rev. A. 50, 2885–2892 (1994)CrossRefzbMATHGoogle Scholar
- 28.R.P. Feynman, A.R. Hibbs. Quantum Mechanics and Path Integrals: Emended Edition (Dover Publications, New York, 2012)zbMATHGoogle Scholar
- 29.O.A. Barut, S. Basri, Path integrals and quantum interference. Am. J. Phys. 60, 896–899 (1992)ADSCrossRefGoogle Scholar
- 30.H. Yabuki, Feynman path integrals in the young double-slit experiment. Int. J. Theor. Phys. 25, 159–174 (1986)CrossRefGoogle Scholar
- 31.R.D. Sorkin, Quantum mechanics as quantum measure theory. Mod. Phys. Lett. A. 09, 3119–3127 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 32.U. Sinha, C. Couteau, T. Jennewein, R. Laflamme, G. Weihs, Ruling out multi-order interference in quantum mechanics. Science. 329, 418–421 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 33.H. De Raedt, K. Michielsen, K. Hess, Analysis of multipath interference in three-slit experiments. Phys. Rev. A. 85, 012101 (2012)ADSCrossRefGoogle Scholar
- 34.R. Sawant, J. Samuel, A. Sinha, S. Sinha, U. Sinha, Nonclassical paths in quantum interference experiments. Phys. Rev. Lett. 113, 120406 (2014)ADSCrossRefGoogle Scholar
- 35.A. Sinha, A.H. Vijay, U. Sinha, On the superposition principle in interference experiments. Sci. Rep. 5, 10304 (2015)ADSCrossRefGoogle Scholar
- 36.O.S. Magana-Loaiza, I. De Leon, M. Mirhosseini, R. Fickler, A. Safari, U. Mick, B. McIntyre, P. Banzer, B. Rodenburg, G. Leuchs, et al., Exotic looped trajectories of photons in three-slit interference. Nat. Commun. 7, 13987 (2016)ADSCrossRefGoogle Scholar
- 37.J.Q. Quach, Which-way double-slit experiments and born-rule violation. Phys. Rev. A. 95, 042129 (2017)ADSCrossRefGoogle Scholar
- 38.R.P. Feynman, space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20, 367 (1948)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 39.A.V. Wijngaarden, W.L. Scheen. Table of Fresnel Integrals (Verhandl. Konink. Ned. Akad.Wetenschapen., Amsterdam, 1949)zbMATHGoogle Scholar
- 40.R. Hangelbroek, Numerical approximation of Fresnel integrals by means of Chebyshev polynomials. J. Eng. Math. 1, 37–50 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
- 41.R. Bulirsch, Numerical calculation of the sine, cosine and Fresnel integrals. Numer. Math. 9, 380–385 (1967)MathSciNetCrossRefGoogle Scholar
- 42.M. Born, Quantenmechanik der stoßvorgänge. Z. Phys. 38, 803–827 (1926)ADSCrossRefzbMATHGoogle Scholar
- 43.T.H. Boyer, Classical electromagnetic deflections and lag effects associated with quantum interference pattern shifts: considerations related to the Aharonov-Bohm effect. Phys. Rev. D. 8, 1679 (1973)ADSCrossRefGoogle Scholar
- 44.J.R. Friedman, V. Patel, W. Chen, S.K. Tolpygo, J.E. Lukens, Quantum superposition of distinct macroscopic states. Nature. 406, 43–46 (2000)ADSCrossRefGoogle Scholar
- 45.C.H. van der Wal, A.C.J. ter Haar, F.K. Wilhelm, R.N. Schouten, C.J.P.M. Harmans, T.P. Orlando, S. Lloyd, J.E. Mooij, Quantum superposition of macroscopic persistent-current states. Nature. 290, 773–777 (2000)Google Scholar
- 46.A.V.N.V.V. Aristov, Quantum computation and hidden variables. Proc. SPIE. 7023, 702302 (2008)CrossRefGoogle Scholar
- 47.F.K. Wilhelm, M.J. Storcz, C.H. van der Wal, C.J.P.M. Harmans, J.E. Mooij, in Decoherence of flux qubits coupled to electronic circuits. Advances in Solid State Physics (Springer, Berlin, 2003), pp. 763–780Google Scholar
- 48.J.E. Mooij, T.P. Orlando, L. Levitov, L. Tian, C.H. Van der Wal, S. Lloyd, Josephson persistent-current qubit. Science. 285, 1036–1039 (1999)CrossRefGoogle Scholar
- 49.T.P. Orlando, S. Lloyd, L.S. Levitov, K.K. Berggren, M.J. Feldman, M.F. Bocko, J.E. Mooij, C.J.P. Harmans, C.H. van der Wal, Flux-based superconducting qubits for quantum computation. Phys. C. 372, 194–200 (2002)ADSCrossRefGoogle Scholar
- 50.T.P. Orlando, L. Tian, D.S. Crankshaw, S. Lloyd, C.H. van der Wal, J.E. Mooij, F. Wilhelm, Engineering the quantum measurement process for the persistent current qubit. Phys. C. 368, 294–299 (2002)ADSCrossRefGoogle Scholar
- 51.T.P. Orlando, J.E. Mooij, L. Tian, C. van der Wal, L.S. Levitov, S. Lloyd, J.J. Mazo, Superconducting persistent-current qubit. Phys. Rev. B. 60, 15398 (1999)ADSCrossRefGoogle Scholar
- 52.L. Tian, L.S. Levitov, C.H. van der Wal, J.E. Mooij, T.P. Orlando, S. Lloyd, C.J.P.M. Harmans, J.J. Mazo, in Decoherence of the superconducting persistent current qubit. Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics (Springer, Dordrecht, 2000), pp. 429–438Google Scholar
- 53.M. Bendahane, M. El Atiki, A. Kassou-Ou-Ali, Two-state magnetic field Aharonov–Bohm effect and the wave–particle duality in a Mach–Zehnder interferometer. International Journal of Quantum Information. 15, 1750032 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 54.C. Furtado, G. Duarte, Dual Aharonov–Bohm effect. Phys. Scr. 71, 7 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 55.J.P. Dowling, C.P. Williams, J.D. Franson, Maxwell duality Lorentz invariance, and topological phase. Phys. Rev. Lett. 83, 2486 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar