Advertisement

The Double-Slit Electron Diffraction Experiment with Aharonov-Bohm Phase Effect Revisited and the Divergence in its Asymptotic Form

  • D. AssafrãoEmail author
  • C. C. Favarato
  • S. V. B. Gonçalves
  • G. Simonelli
General and Applied Physics
  • 4 Downloads

Abstract

In this work, we consider the experiment of diffraction and interference of electrons through a double slit added to the Aharonov-Bohm phase effect. We applied the asymptotic Fresnel functions to one term of the interference process obtaining an expression for the intensity with divergence for certain values of the flow parameter. This led us to an expression incapable of recovering the asymmetry effects of the diffraction pattern arising from the AB phase, as might be expected, since purely quantum effects cannot be classically reproduced.

Keywords

Diffraction Aharonov-Bohm effect Path integrals Fresnel functions 

Notes

Acknowledgments

We wish to thank Alan Johnny Romanel Ambrozio for helpful communication during the preparation of this work. Simulations were performed in Mathematica Version 11.3, Wolfram Research, Champaign, IL.

Funding Information

This work has received partial financial supporting from CNPq (Brazil), CAPES (Brazil), and FAPES (Brazil).

References

  1. 1.
    W. Ehrenberg, R. Siday, The refractive index in electron optics and the principles of dynamics. Proc. Phys. Soc. London, Sect. B. 62, 8 (1949)ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    Y. Aharonov, D. Bohm, Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Y. Aharonov, D. Bohm, Further considerations on electromagnetic potentials in the quantum theory. Phys. Rev. 123, 1511–1524 (1961)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    M. Bright, D. Singleton, Time-dependent non-Abelian Aharonov-Bohm effect. Phys. Rev. 91, 085010 (2015)MathSciNetGoogle Scholar
  5. 5.
    T.T. Wu, C.N. Yang, Concept of nonintegrable phase factors and global formulation of gauge fields. Phys. Rev. D. 12, 3845–3857 (1975)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    S. Olariu, I.I. Popescu, The quantum effects of electromagnetic fluxes. Rev. Mod. Phys. 57, 339–436 (1985)ADSCrossRefGoogle Scholar
  7. 7.
    B.E. Allman, A. Cimmino, A.G. Klein, G.I. Opat, H. Kaiser, S.A. Werner, Scalar Aharonov-Bohm experiment with neutrons. Rev. Mod. Phys. 68, 2409–2412 (1992)Google Scholar
  8. 8.
    B.E. Allman, A. Cimmino, A.G. Klein, G.I. Opat, H. Kaiser, S.A. Werner, Erratum: scalar Aharonov-Bohm experiment with neutrons [Phys. Rev. Lett. 68, 2409 (1992)]. Phys. Rev. Lett. 70, 250–250 (1993)Google Scholar
  9. 9.
    C. Gerry, V. Singh, Feynman path-integral approach to the Aharonov-Bohm effect. Phys. Rev. D. 20, 2550–2554 (1979)ADSCrossRefGoogle Scholar
  10. 10.
    M.V. Berry, Exact Aharonov-Bohm wavefunction obtained by applying Dirac’s magnetic phase factor. Eur. J. Phys. 1, 240 (1980)CrossRefGoogle Scholar
  11. 11.
    X. Zhu, W.C. Henneberger, Some observations on the dynamics of the Aharonov-Bohm effect. J. Phys. A Math. Gen. 23, 3983 (1990)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    D. Shapiro, W.C. Henneberger, The Aharonov-Bohm effect in double- and single-slit diffraction. J. Phys. A Math. Gen. 22, 3605 (1989)ADSCrossRefGoogle Scholar
  13. 13.
    N. Osakabe, T. Matsuda, T. Kawasaki, J. Endo, A. Tonomura, S. Yano, H. Yamada, Experimental confirmation of Aharonov-Bohm effect using a toroidal magnetic field confined by a superconductor. Phys. Rev. A. 34, 815–822 (1986)ADSCrossRefGoogle Scholar
  14. 14.
    A. Tonomura, T. Matsuda, R. Suzuki, A. Fukuhara, N. Osakabe, H. Umezaki, J. Endo, K. Shinagawa, Y. Sugita, H. Fujiwara, Observation of Aharonov-Bohm effect by electron holography. Phys. Rev. Lett. 48, 1443–1446 (1982)ADSCrossRefGoogle Scholar
  15. 15.
    A. Tonomura, N. Osakabe, T. Matsuda, T. Kawasaki, J. Endo, S. Yano, H. Yamada, Evidence for Aharonov-Bohm effect with magnetic field completely shielded from electron wave. Phys. Rev. Lett. 56, 792–795 (1986)ADSCrossRefGoogle Scholar
  16. 16.
    M. Ballesteros, R. Weder, The Aharonov–Bohm effect and Tonomura others. experiments: rigorous results. J. Math. Phys. 50, 122108 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    M.V. Berry, Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A: Mathematical, Physical and Engineering Sciences. 392, 45–57 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Y. Aharonov, J. Anandan, Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 58, 1593–1596 (1987)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    J. Samuel, R. Bhandari, General setting for Berry’s phase. Phys. Rev. Lett. 60, 2339–2342 (1988)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    S. Pancharatnam, Generalized theory of interference, and its applications. Proc. Indiana Acad. Sci. Section A. 44, 247–262 (1956)MathSciNetCrossRefGoogle Scholar
  21. 21.
    J. Anandan, Non-adiabatic non-abelian geometric phase. Phys. Lett. A. 133, 171–175 (1988)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    M. Beau, Feynman path integral approach to electron diffraction for one and two slits: analytical results. Eur. J. Phys. 33, 1023 (2012)CrossRefzbMATHGoogle Scholar
  23. 23.
    D.H. Kobe, Aharonov-Bohm effect revisited. Ann. Phys. 123, 381–410 (1979)ADSCrossRefGoogle Scholar
  24. 24.
    P. Sancho, The two-particle two-slit experiment. Eur. Phys. J. D. 68, 34 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    D.H. Kobe, V.C. Aguilera-Navarro, R.M. Ricotta, Asymmetry of the Aharonov-Bohm diffraction pattern and Ehrenfest’s theorem. Phys. Rev. A. 45, 6192–6197 (1992)ADSCrossRefGoogle Scholar
  26. 26.
    V.C. Aguilera-Navarro, R.M. Quick, Limiting analytic form for an Aharonov-Bohm diffraction pattern. Phys. Rev. A. 50, 2885–2892 (1994)ADSCrossRefGoogle Scholar
  27. 27.
    K. Bradonjić, J.D. Swain, Quantum measurement and the Aharonov–Bohm effect with superposed magnetic fluxes. Phys. Rev. A. 50, 2885–2892 (1994)CrossRefzbMATHGoogle Scholar
  28. 28.
    R.P. Feynman, A.R. Hibbs. Quantum Mechanics and Path Integrals: Emended Edition (Dover Publications, New York, 2012)zbMATHGoogle Scholar
  29. 29.
    O.A. Barut, S. Basri, Path integrals and quantum interference. Am. J. Phys. 60, 896–899 (1992)ADSCrossRefGoogle Scholar
  30. 30.
    H. Yabuki, Feynman path integrals in the young double-slit experiment. Int. J. Theor. Phys. 25, 159–174 (1986)CrossRefGoogle Scholar
  31. 31.
    R.D. Sorkin, Quantum mechanics as quantum measure theory. Mod. Phys. Lett. A. 09, 3119–3127 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    U. Sinha, C. Couteau, T. Jennewein, R. Laflamme, G. Weihs, Ruling out multi-order interference in quantum mechanics. Science. 329, 418–421 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    H. De Raedt, K. Michielsen, K. Hess, Analysis of multipath interference in three-slit experiments. Phys. Rev. A. 85, 012101 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    R. Sawant, J. Samuel, A. Sinha, S. Sinha, U. Sinha, Nonclassical paths in quantum interference experiments. Phys. Rev. Lett. 113, 120406 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    A. Sinha, A.H. Vijay, U. Sinha, On the superposition principle in interference experiments. Sci. Rep. 5, 10304 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    O.S. Magana-Loaiza, I. De Leon, M. Mirhosseini, R. Fickler, A. Safari, U. Mick, B. McIntyre, P. Banzer, B. Rodenburg, G. Leuchs, et al., Exotic looped trajectories of photons in three-slit interference. Nat. Commun. 7, 13987 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    J.Q. Quach, Which-way double-slit experiments and born-rule violation. Phys. Rev. A. 95, 042129 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    R.P. Feynman, space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20, 367 (1948)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    A.V. Wijngaarden, W.L. Scheen. Table of Fresnel Integrals (Verhandl. Konink. Ned. Akad.Wetenschapen., Amsterdam, 1949)zbMATHGoogle Scholar
  40. 40.
    R. Hangelbroek, Numerical approximation of Fresnel integrals by means of Chebyshev polynomials. J. Eng. Math. 1, 37–50 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    R. Bulirsch, Numerical calculation of the sine, cosine and Fresnel integrals. Numer. Math. 9, 380–385 (1967)MathSciNetCrossRefGoogle Scholar
  42. 42.
    M. Born, Quantenmechanik der stoßvorgänge. Z. Phys. 38, 803–827 (1926)ADSCrossRefzbMATHGoogle Scholar
  43. 43.
    T.H. Boyer, Classical electromagnetic deflections and lag effects associated with quantum interference pattern shifts: considerations related to the Aharonov-Bohm effect. Phys. Rev. D. 8, 1679 (1973)ADSCrossRefGoogle Scholar
  44. 44.
    J.R. Friedman, V. Patel, W. Chen, S.K. Tolpygo, J.E. Lukens, Quantum superposition of distinct macroscopic states. Nature. 406, 43–46 (2000)ADSCrossRefGoogle Scholar
  45. 45.
    C.H. van der Wal, A.C.J. ter Haar, F.K. Wilhelm, R.N. Schouten, C.J.P.M. Harmans, T.P. Orlando, S. Lloyd, J.E. Mooij, Quantum superposition of macroscopic persistent-current states. Nature. 290, 773–777 (2000)Google Scholar
  46. 46.
    A.V.N.V.V. Aristov, Quantum computation and hidden variables. Proc. SPIE. 7023, 702302 (2008)CrossRefGoogle Scholar
  47. 47.
    F.K. Wilhelm, M.J. Storcz, C.H. van der Wal, C.J.P.M. Harmans, J.E. Mooij, in Decoherence of flux qubits coupled to electronic circuits. Advances in Solid State Physics (Springer, Berlin, 2003), pp. 763–780Google Scholar
  48. 48.
    J.E. Mooij, T.P. Orlando, L. Levitov, L. Tian, C.H. Van der Wal, S. Lloyd, Josephson persistent-current qubit. Science. 285, 1036–1039 (1999)CrossRefGoogle Scholar
  49. 49.
    T.P. Orlando, S. Lloyd, L.S. Levitov, K.K. Berggren, M.J. Feldman, M.F. Bocko, J.E. Mooij, C.J.P. Harmans, C.H. van der Wal, Flux-based superconducting qubits for quantum computation. Phys. C. 372, 194–200 (2002)ADSCrossRefGoogle Scholar
  50. 50.
    T.P. Orlando, L. Tian, D.S. Crankshaw, S. Lloyd, C.H. van der Wal, J.E. Mooij, F. Wilhelm, Engineering the quantum measurement process for the persistent current qubit. Phys. C. 368, 294–299 (2002)ADSCrossRefGoogle Scholar
  51. 51.
    T.P. Orlando, J.E. Mooij, L. Tian, C. van der Wal, L.S. Levitov, S. Lloyd, J.J. Mazo, Superconducting persistent-current qubit. Phys. Rev. B. 60, 15398 (1999)ADSCrossRefGoogle Scholar
  52. 52.
    L. Tian, L.S. Levitov, C.H. van der Wal, J.E. Mooij, T.P. Orlando, S. Lloyd, C.J.P.M. Harmans, J.J. Mazo, in Decoherence of the superconducting persistent current qubit. Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics (Springer, Dordrecht, 2000), pp. 429–438Google Scholar
  53. 53.
    M. Bendahane, M. El Atiki, A. Kassou-Ou-Ali, Two-state magnetic field Aharonov–Bohm effect and the wave–particle duality in a Mach–Zehnder interferometer. International Journal of Quantum Information. 15, 1750032 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    C. Furtado, G. Duarte, Dual Aharonov–Bohm effect. Phys. Scr. 71, 7 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    J.P. Dowling, C.P. Williams, J.D. Franson, Maxwell duality Lorentz invariance, and topological phase. Phys. Rev. Lett. 83, 2486 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversidade Federal do Espírito SantoVitóriaBrazil
  2. 2.Department of Materials Science and TechnologyUniversidade Federal da Bahia, Escola PolitécnicaSalvadorBrazil

Personalised recommendations