White Dwarf Spectra for Studies of Time Variation of the Fine Structure Constant

  • T. D. LeEmail author
Particles and Fields


We report a newly updated constraint on space-time variation in the fine structure constant, \( \alpha =\frac{e^2}{4\pi {\varepsilon}_0\mathit{\hslash c}} \), from an analysis of white dwarf spectra. We obtain ∆α/α = (0.007 ± 0.087) × 10−6 from a comparison of laboratory spectra of Fe V with those found in the spectra from the white dwarf G191-B2B. The obtained result in this study is used to suggest further improvement in observational technique which would lead to a tighter constraint on ∆α/α.


Varying constants Varying alpha Hot white dwarf stars Absorption spectra analysis 



  1. 1.
    P.J. Mohr, B.N. Taylor, B.N. Newell, CODATA recommended values of the fundamental physical constants: 2010. Rev. Mod. Phys. 84, 1527–1605 (2012)CrossRefGoogle Scholar
  2. 2.
    M.T. Murphy, J.K. Webb, V.V. Flambaum, Further evidence for a variable fine-structure constant from Keck/HIRES QSO absorption spectra. Mon. Not. R. Astron. Soc. 345, 609–638 (2003)CrossRefGoogle Scholar
  3. 3.
    M.T. Murphy, J.K. Webb, et al., Astron. Phys. Space. Sci. 283, 577 (2003)CrossRefGoogle Scholar
  4. 4.
    J.K. Webb, M.M. Murphy, et al., Astron. Phys. Space. Sci 283, 565 (2003)CrossRefGoogle Scholar
  5. 5.
    J.K. Webb, J.A. King, M.T. Murphy, V.V. Flambaum, R.F. Carswell, M.B. Bainbridge, Indications of a spatial variation of the fine structure constant. Phys. Rev. Lett. 107, 191101 (2011)CrossRefGoogle Scholar
  6. 6.
    J.K. Webb, A. Wright, et al., Mem. S. A. It. 85, 57 (2014)Google Scholar
  7. 7.
    H. Chand, R. Srianand, P. Petitjean, B. Aracil, Probing the time-variation of the fine-structure constant: results based on Si IV doublets from a UVES sample. Astron. Astrophys. 430, 47–58 (2005)CrossRefGoogle Scholar
  8. 8.
    H. Chand, R. Srianand, P. Petitjean, B. Aracil, R. Quast, D. Reimers, Variation of the fine-structure constant: very high resolution spectrum of QSO HE 0515-4414. Astron. Astrophys. 451, 45–56 (2006)CrossRefGoogle Scholar
  9. 9.
    S.A. Levshakov, M. Centurion, P. Molaro, et al., Most precise single redshift bound to Delta alpha/alpha. Astron. Astrophys. 449, 879–889 (2006)CrossRefGoogle Scholar
  10. 10.
    S.A. Levshakov, F. F Combes, F. Boone, et al., An upper limit to the variation in the fundamental constants at redshift z = 5.2. Astron. Astrophys. 540, L9 (2012)CrossRefGoogle Scholar
  11. 11.
    P. Molaro, M. Centurion, J.B. Whitmore, et al., Astron. Astrophys. 555, A68 (2013)CrossRefGoogle Scholar
  12. 12.
    M.T. Murphy, J.K. Webb, V.V. Flambaum, Revision of VLT/UVES constraints on a varying fine-structure constant. Mon. Not. R. Astron. Soc. 384, 1053–1062 (2008)CrossRefGoogle Scholar
  13. 13.
    L.L. Cowie, A. Songaila, Astrophysical limits on the evolution of dimensionless physical constants over cosmological time. Astrophys. J. 453, 596 (1995)CrossRefGoogle Scholar
  14. 14.
    C.L. Carilli, K.M. Menten, J.T. Stocke, et al., Phys. Rev. Lett. 85, 5511 (2001)CrossRefGoogle Scholar
  15. 15.
    R. Srianand, H. Chand, P. Petitjean, B. Aracil, Limits on the time variation of the electromagnetic fine-structure constant in the low energy limit from absorption lines in the spectra of distant quasars. Phys. Rev. Lett. 92, 121302 (2004)CrossRefGoogle Scholar
  16. 16.
    R. Srianand, H. Chand, P. Petitjean, B. Aracil, Srianand et al. reply. Phys. Rev. Lett. 99, 239002 (2007)CrossRefGoogle Scholar
  17. 17.
    J.K. Webb, V.V. Flambaum, C.W. Churchill, M.J. Drinkwater, J.D. Barrow, Search for time variation of the fine structure constant. Phys. Rev. Lett. 82, 884–887 (1999)CrossRefGoogle Scholar
  18. 18.
    J.K. Webb, M.T. Murphy, V.V. Flambaum, V.A. Dzuba, J.D. Barrow, C.W. Churchill, J.X. Prochaska, A.M. Wolfe, Further evidence for cosmological evolution of the fine structure constant. Phys. Rev. Lett. 87, 091301 (2001)CrossRefGoogle Scholar
  19. 19.
    M.T. Murphy, V.V. Flambaum, S. Muller, C. Henkel, Strong limit on a variable proton-to-electron mass ratio from molecules in the distant universe. Science 320, 1611–1613 (2008)CrossRefGoogle Scholar
  20. 20.
    N. Kanekar, J.N. Chengalur, T. Ghosh, Conjugate 18 cm OH satellite lines at a cosmological distance. Phys. Rev. Lett. 93, 051302 (2004)CrossRefGoogle Scholar
  21. 21.
    N. Kanekar, G.I. Langston, J.T. Stocke, C.L. Carilli, K.M. Menten, Constraining fundamental constant evolution with HI and OH lines. Astrophys. J. 746, L16 (2012)CrossRefGoogle Scholar
  22. 22.
    J.C. Berengut et al., Mem. Soc. Astron. Italiana. 80, 795 (2009)Google Scholar
  23. 23.
    N. Kanekar, Astrophys. J. 728, L12 (2011)CrossRefGoogle Scholar
  24. 24.
    J. Bagdonaite et al., Science 4, 46 (2013)CrossRefGoogle Scholar
  25. 25.
    J. Bagdonaite et al., Phys. Rev. Lett. 111, 23110 (2013)CrossRefGoogle Scholar
  26. 26.
    H. Rahmani, M. Wendt, R. Srianand, P. Noterdaeme, P. Petitjean, P. Molaro, J.B. Whitmore, M.T. Murphy, M. Centurion, H. Fathivavsari, S. D’Odorico, T.M. Evans, S.A. Levshakov, S. Lopez, C.J.A.P. Martins, D. Reimers, G. Vladilo, The UVES large program for testing fundamental physics – II. Constraints on a change in μ towards quasar HE 0027−1836★. Mon. Not. R. Astron. Soc. 435, 861–878 (2013)CrossRefGoogle Scholar
  27. 27.
    M.T. Murphy, V.V. Flambaum, J.K. Webb, et al., Lect. Notes Phys. 648, 131 (2014)CrossRefGoogle Scholar
  28. 28.
    J.A. King, J.K. Webb, M.T. Murphy, et al., Mon. Not. R. Astron. Soc. 422, 4 (2012)CrossRefGoogle Scholar
  29. 29.
    T.D. Le, A stringent limit on variation of the fine-structure constant using absorption line multiplets in the early universe. Astrophysics 59, 285–291 (2016)CrossRefGoogle Scholar
  30. 30.
    J. Magueijo, I.D. Barrow, H.B. Sandvik, Is it e or is it c? Experimental tests of varying alpha. Phys. Lett. B. 549, 284–289 (2002)CrossRefGoogle Scholar
  31. 31.
    V.V. Flambaum, E.V. Shuryak, AIP Conf. Proc. 995, 1 (2008)CrossRefGoogle Scholar
  32. 32.
    O. Minazzoli, A. Hees, Dilatons with intrinsic decouplings. Phys. Rev. D. 94, 064038 (2016)MathSciNetCrossRefGoogle Scholar
  33. 33.
    V.A. Dzuba, V.V. Flambaum, J.K. Webb, Space-time variation of physical constants and relativistic corrections in atoms. Phys. Rev. Lett. 82, 888–891 (1999)CrossRefGoogle Scholar
  34. 34.
    P. Lorén-Aguilar et al., Time variation of G and within models with extra dimensions. Class. Quant. Grav. 20, 3885–3896 (2003)CrossRefzbMATHGoogle Scholar
  35. 35.
    E. García-Berro et al., The variation of the gravitational constant inferred from the Hubble diagram of Type Ia supernovae. Int. J. Mod. Phys. D. 15, 1163–1174 (2006)CrossRefzbMATHGoogle Scholar
  36. 36.
    E. García-Berro et al., J. Cosmol. Astropart. Phys. 5, 21 (2011)CrossRefGoogle Scholar
  37. 37.
    E. García-Berro et al., Mem. S. A. It. 85, 118 (2014)Google Scholar
  38. 38.
    T. Damour, G.W. Gibbons, J.H. Taylor, Limits on the variability of G using binary-pulsar data. Phys. Rev. Lett. 61, 1151–1154 (1988)CrossRefGoogle Scholar
  39. 39.
    T. Damour, J.H. Taylor, On the orbital period change of the binary pulsar PSR 1913 + 16. Astrophys. J. 366, 501 (1991)CrossRefGoogle Scholar
  40. 40.
    V.M. Kaspi, J.H. Taylor, High-precision timing of millisecond pulsars. 3: long-term monitoring of PSRs B1855+09 and B1937+21. Astrophys. J. 428, 713 (1994)CrossRefGoogle Scholar
  41. 41.
    D.B. Guenther, L.M. Krauss, P. Demarque, Testing the constancy of the gravitational constant using helioseismology. Astrophys. J. 498, 871–876 (1998)CrossRefGoogle Scholar
  42. 42.
    S.E. Thorsett, The gravitational constant, the Chandrasekhar limit, and neutron star masses. Phys. Rev. Lett. 77, 1432–1435 (1996)CrossRefGoogle Scholar
  43. 43.
    F. Hofmann, J. Muller, L. Biskupek, Astron. Astrophys. L5, 522 (2010)Google Scholar
  44. 44.
    O.G. Benvenuto, E.G. Berro, J. Isern, Asteroseismological bound on Ġ/G from pulsating white dwarfs. Phys. Rev. D. 69, 082002 (2004)CrossRefGoogle Scholar
  45. 45.
    A.H. Corsico et al., J. Cosmol. Astropart. Phys. 6, 032 (2013)CrossRefGoogle Scholar
  46. 46.
    C.J. Copi, A.N. Davis, L.M. Krauss, New nucleosynthesis constraint on the variation of G. Phys. Rev. Lett. 92, 171301 (2004)CrossRefGoogle Scholar
  47. 47.
    C. Bambi, M. Giannotti, F.L. Villante, Response of primordial abundances to a general modification of GN and/or of the early universe expansion rate. Phys. Rev. D. 71, 123524 (2005)CrossRefGoogle Scholar
  48. 48.
    J.C. Berengut, V.V. Flambaum, A. Ong, J.K. Webb, J.D. Barrow, M.A. Barstow, S.P. Preval, J.B. Holberg, Limits on the dependence of the fine-structure constant on gravitational potential from white-dwarf spectra. Phys. Rev. Lett. 111, 010801 (2013)CrossRefGoogle Scholar
  49. 49.
    I.I. Agafonova, P. Molaro, S.A. Levshakov, J.L. Hou, First measurement of Mg isotope abundances at high redshifts and accurate estimate of Δα/α. Astron. Astrophys. 529, A28 (2011)CrossRefGoogle Scholar
  50. 50.
    K. Griest, J.B. Whitmore, A.M. Wolfe, J.X. Prochaska, J.C. Howk, G.W. Marcy, Wavelength accuracy of the Keck HIRES spectrograph and measuring changes in the fine structure constant. Astrphys. J. 708, 158–170 (2010)CrossRefGoogle Scholar
  51. 51.
    J.B. Whitmore, Murphy, K. Griest, Astrophys. J. 723, 89–99 (2010)CrossRefGoogle Scholar
  52. 52.
    D.E. Welty, L.M. Hobbs, V.P. Kulkarni, A high-resolution survey of interstellar NA I D1 lines. Astrophys. J. 436, 152 (1994)CrossRefGoogle Scholar
  53. 53.
    D.E. Welty, D.C. Morton, L.M. Hobbs, A high-resolution survey of interstellar CA II absorption. Astrophys. J. 106, 533 (1996)CrossRefGoogle Scholar
  54. 54.
    M. Wendt, P. Molaro, Robust limit on a varying proton-to-electron mass ratio from a single H2 system. Astron. Astrophys. 526, A96 (2011)CrossRefGoogle Scholar
  55. 55.
    M.T. Murphy, J.K. Webb, V.V. Flambaum, C.W. Churchill, J.X. Prochaska, Possible evidence for a variable fine-structure constant from QSO absorption lines: systematic errors. Mon. Not. R. Astron. Soc. 327, 1223–1236 (2001)CrossRefGoogle Scholar
  56. 56.
    H. Chand, R. Srianand, P. Petitjean, B. Aracil, Probing the cosmological variation of the fine-structure constant: results based on VLT-UVES sample. Astron. Astrophys. 417, 853–871 (2004)CrossRefGoogle Scholar
  57. 57.
    G. Nave, C.J. Sansonetti, J. Opt. Soc. Am. B28, 737 (2011)CrossRefGoogle Scholar
  58. 58.
    A. Kramida, Energy levels and spectral lines of quadruply ionized iron (Fe V). Astrophys. J. Suppl. Ser. 212, 11 (2014)CrossRefGoogle Scholar
  59. 59.
    M.T. Murphy, J.C. Berengut, Mon. Not. R. Astron. Soc. 438, 388 (2014)CrossRefGoogle Scholar
  60. 60.
    M.B. Bainbridge, J.K. Webb, Mon. Not. R. Astron. Soc. 468, 1639 (2017)Google Scholar

Copyright information

© Sociedade Brasileira de Física 2019

Authors and Affiliations

  1. 1.Division of Computational Physics, Institute for Computational ScienceTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations