Advertisement

Thermal and Electro-optical Properties of Graphene Oxide/Dye-Doped Nematic Liquid Crystal

  • Hasan EskalenEmail author
  • Şükrü Özgan
  • Mustafa Okumuş
  • Süleyman Kerl
Condensed Matter
  • 18 Downloads

Abstract

In this paper, the liquid crystalline complex systems were obtained by dispersing graphene oxide (GO) and methyl blue (MB) dye to liquid crystal mixture E7. The phase transitions and microstructural properties of the prepared liquid crystalline complex systems were investigated by differential scanning calorimeter (DSC) and polarised optical microscopy (POM). DSC and POM results showed that there was no change in the molecular structures of the complexes and they exhibited completely liquid crystalline properties during continuous heating. Also, the voltage-dependent optical transmissions of the complex systems were measured by the voltage transmittance experiments. It was found that the optical transmissions of the complex systems were not very different from the each other, but threshold voltage of the complex decreased by GO doping and increased for MB/GO doping. Furthermore, the dielectric properties of the complex systems were investigated by using impedance analyser. Dielectrically, measurements showed that the dielectric constant decreased with the dispersion of GO and GO/MB, and the critical frequency of E7 increased with doping.

Keywords

Nematic liquid crystals Graphene oxide Electro-optic POM 

Notes

Acknowledgements

We would like to thank Prof. Dr. Mehmet TÜMER, for overall support and helping for DSC measurement.

Funding Information

This work was financially supported by Kahramanmaras Sutcu Imam University, (KSU) Scientific Research Projects Coordination Department, under Project No. 2017/4-29D.

References

  1. 1.
    R.P. Feynman, There’s plenty of room at the bottom. Eng. Sci. 23(5), 22–36 (1960)Google Scholar
  2. 2.
    Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906 (2010)Google Scholar
  3. 3.
    R. Narayan, J.E. Kim, J.Y. Kim, K.E. Lee, S.O. Kim, Graphene oxide liquid crystals: discovery, evolution and applications. Adv. Mater. 28(16), 3045 (2016)Google Scholar
  4. 4.
    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902 (2008)ADSGoogle Scholar
  5. 5.
    C. Ataca, E. Aktürk, S. Ciraci, H. Ustunel, High-capacity hydrogen storage by metallized graphene. Appl. Phys. Lett. 93(4), 043123 (2008)ADSGoogle Scholar
  6. 6.
    M. Gürbüz, M. Can Şenel, E. Koç, The effect of sintering time, temperature, and graphene addition on the hardness and microstructure of aluminum composites. J. Compos. Mater. 52(4), 553 (2018)Google Scholar
  7. 7.
    R. Ayranci, G. Başkaya, M. Güzel, S. Bozkurt, F. Şen, M. Ak, Carbon based nanomaterials for high performance optoelectrochemical systems. ChemistrySelect. 2(4), 1548 (2017)Google Scholar
  8. 8.
    N. Karatepe, N. Yuca, B.F. Şenkal, Synthesis of carbon-based nano materials for hydrogen storage. Fullerenes, Nanotubes and Carbon Nanostructures. 21(1), 31 (2013)ADSGoogle Scholar
  9. 9.
    T. Vimal, D. Singh, S. Gupta, S. Pandey, K. Agrahari, R. Manohar, Thermal and optical study of semiconducting CNTs-doped nematic liquid crystalline material. Phase Transit. 89(6), 632 (2016)Google Scholar
  10. 10.
    S.J. Sung, M.R. Kim, D. W. Ahn, D.H. Kim, J.K. Kang, J.K. Park, K.Y. Cho, Photoinduced alignment based on the blend of poly (vinyl cinnamate) and oligomeric Cinnamate via linear polarized uv irradiation onto groove patterned surface. Polymer Korea. 34(1), 32 (2010)Google Scholar
  11. 11.
    H.Y. Mun, H.G. Park, H.C. Jeong, J.H. Lee, B.Y. Oh, D.S. Seo, Thermal and electro-optical properties of cerium-oxide-doped liquid-crystal devices. Liq. Cryst. 44(3), 538 (2017)Google Scholar
  12. 12.
    B. Liu, Y. Ma, D. Zhao, L. Xu, F. Liu, W. Zhou, L. Guo, Effects of morphology and concentration of CuS nanoparticles on alignment and electro-optic properties of nematic liquid crystal. Nano Res. 10 (2), 618 (2017)Google Scholar
  13. 13.
    H. Eskalen, S. Kerli, Ş Özgan, Hydrothermally produced cobalt oxide Nanostructures at different temperatures and effect on phase transition temperature and threshold voltage of nematic liquid crystal host, Cobalt (InTech) (2017)Google Scholar
  14. 14.
    M. Mishra, R.S. Dabrowski, R. Dhar, Thermodynamical, optical, electrical and electro-optical studies of a room temperature nematic liquid crystal 4-pentyl-4 -cyanobiphenyl dispersed with barium titanate nanoparticles. J. Mol. Liq. 213, 247 (2016)Google Scholar
  15. 15.
    H. Eskalen, Ş Özğan, Ü. Alver, S. Kerli, Electro-optical properties of liquid crystals composite with zinc oxide nanoparticles. Acta Physica Polonica, A. 127, 756 (2015)Google Scholar
  16. 16.
    P. Yaduvanshi, A. Mishra, S. Kumar, R. Dhar, Effect of silver nanoparticles on frequency and temperature-dependent electrical parameters of a discotic liquid crystalline material. Liq. Cryst. 42(10), 1478 (2015)Google Scholar
  17. 17.
    H. Iwanaga, K. Naito, F. Effenberger, Oligothiophene dyes for guest-host liquid crystal displays. Liq. Cryst. 27(1), 115 (2000)Google Scholar
  18. 18.
    A. Alıcılar, N. Kaya, F. Akkurt, Phase transitions and molecular orientation in nematic liquid crystals doped with blue-red dye mixtures and carbon nanotubes. Fullerenes, Nanotubes, Carbon Nanostruct. 21(3), 258 (2013)ADSGoogle Scholar
  19. 19.
    E. Şen, N. Kaya, A. Alıcılar, Guest–host interaction of some chloroanthraquinone dyes doped in liquid crystalline matrix and effect of addition of carbon nanotube. J. Mol. Liq. 186, 33 (2013)Google Scholar
  20. 20.
    A. Lorenz, N. Zimmermann, S. Kumar, D.R. Evans, G. Cook, H.S. Kitzerow, Doping the nematic liquid crystal 5CB with milled BaTiO 3 nanoparticles. Phys. Rev. E. 86(5), 051704 (2012)ADSGoogle Scholar
  21. 21.
    J. Pelaez, M. Wilson, Molecular orientational and dipolar correlation in the liquid crystal mixture E7: a molecular dynamics simulation study at a fully atomistic level. Phys. Chem. Chem. Phys. 9(23), 2968 (2007)Google Scholar
  22. 22.
    B. Hogan, E. Kovalska, M. Craciun, A. Baldycheva, 2D material liquid crystals for optoelectronics and photonics. J. Mater. Chem. C. 5(43), 11185 (2017)Google Scholar
  23. 23.
    R. Basu, A. Garvey, D. Kinnamon, Effects of graphene on electro-optic response and ion-transport in a nematic liquid crystal. J. Appl. Phys. 117(7), 074301 (2015)ADSGoogle Scholar
  24. 24.
    R. Basu, Enhancement of polar anchoring strength in a graphene-nematic suspension and its effect on nematic electro-optic switching. Phys. Rev. E. 96(1), 012707 (2017)ADSGoogle Scholar
  25. 25.
    T.M. Alam, C.J. Pearce, Impact of graphene incorporation on the orientational order of graphene/liquid crystal composites. Chem. Phys. Lett. 592, 7 (2014)ADSGoogle Scholar
  26. 26.
    D. Dragoman, E. Vlădescu, Ring-shaped plasmonic logic gates. Plasmonics pp. 1–8 (2018)Google Scholar
  27. 27.
    E. Vlădescu, D. Dragoman, Reconfigurable Plasmonic Logic Gates. Plasmonics pp. 1–7 (2018)Google Scholar
  28. 28.
    M.J. Cho, H.G. Park, H.C. Jeong, J.W. Lee, Y.H. Jung, D.H. Kim, J.H. Kim, J.W. Lee, D.S. Seo, Superior fast switching of liquid crystal devices using graphene quantum dots. Liq. Cryst. 41(6), 761 (2014)Google Scholar
  29. 29.
    S. Al-Zangana, M. Iliut, M. Turner, A. Vijayaraghavan, I. Dierking, Properties of a thermotropic nematic liquid crystal doped with graphene oxide. Adv. Opt. Mater. 4(10), 1541 (2016)Google Scholar
  30. 30.
    V. Marinova, Z.F. Tong, S. Petrov, D. Karashanova, Y.H. Lin, S.H. Lin, K.Y. Hsu, Optics and photonics for information processing X, vol. 9970 (International Society for Optics and Photonics), vol. 9970, p. 997009 (2016)Google Scholar
  31. 31.
    Y. Wei, C.H. Jang, Liquid crystal as sensing platforms for determining the effect of graphene oxide-based materials on phospholipid membranes and monitoring antibacterial activity. Sens. Actuators B. 254, 72 (2018)Google Scholar
  32. 32.
    S. Javadian, N. Dalir, J. Kakemam, Non-covalent intermolecular interactions of colloidal nematic liquid crystals doped with graphene oxide. Liq. Cryst. 44(9), 1341 (2017)Google Scholar
  33. 33.
    G.W. Gray, J.W. Goodby, Smectic liquid crystals: Textures and structures, Vol. 256: Heyden & Son, Philadelphia. 247 South 41 ST ST. (1984)Google Scholar
  34. 34.
    P. Nayek, G. Li, Superior electro-optic response in multiferroic bismuth ferrite nanoparticle doped nematic liquid crystal device. Scientific reports. 5, 10845 (2015)ADSGoogle Scholar
  35. 35.
    C.J. Hsu, L.J. Lin, M.K. Huang, C.Y. Huang, Electro-optical effect of gold nanoparticle dispersed in nematic liquid crystals. Crystals. 7(10), 287 (2017)Google Scholar
  36. 36.
    M. Okumuş, H. Eskalen, M. Sünkür, Ş. Özgan, Mesogenic properties of PAA/6BA binary liquid crystal complexes. J. Mol. Struct. 1178, 428 (2019)ADSGoogle Scholar
  37. 37.
    M. Jamil, F. Ahmad, J. Rhee, Y. Jeon, Nanoparticle-doped polymer-dispersed liquid crystal display. Curr. Sci. 101, 1544 (2011)Google Scholar
  38. 38.
    L. Lucchetti, L. Catani, F. Simoni, Light-controlled electric Freedericksz threshold in dye doped liquid crystals. J. Appl. Phys. 115(20), 203111 (2014)ADSGoogle Scholar
  39. 39.
    P.K. Tripathi, B. Joshi, S. Singh, Pristine and quantum dots dispersed nematic liquid crystal: Impact of dispersion and applied voltage on dielectric and electro-optical properties. Opt. Mater. 69, 61 (2017)ADSGoogle Scholar
  40. 40.
    Y. Karakuş, M. Okutan, A. Kösemen, S. San, Z. Alpaslan, A. Demir, Electrical properties of Zn-Phthalocyanine and poly (3-hexylthiophene) doped nematic liquid crystal. J. Nanomater. 2011, 2 (2011)Google Scholar
  41. 41.
    Y. Gursel, B. Şenkal, N.Y. Canli, Z.G. Özdemir, E. Ahlatcioğlu, Ö. Yılmaz, M. Okutan, Addition of single-wall carbon nanotubes to a liquid crystal material: Impact on dielectric properties. Mater. Sci. Semicond. Process. 34, 182 (2015)Google Scholar

Copyright information

© Sociedade Brasileira de Física 2019

Authors and Affiliations

  1. 1.Department of Materials Sciences and EngineeringKahramanmaras Sutcu Imam UniversityKahramanmarasTurkey
  2. 2.Department of PhysicsKahramanmaras Sutcu Imam UniversityKahramanmarasTurkey
  3. 3.Department of Metallurgical and Materials EngineeringBatman UniversityBatmanTurkey
  4. 4.Department of Energy Systems EngineeringKahramanmaras Istiklal UniversityKahramanmarasTurkey

Personalised recommendations