Advertisement

A Study on the Synthesis of Superheavy Element Z = 125

  • K. N. Sridhar
  • H. C. ManjunathaEmail author
  • H. B. Ramalingam
Nuclear Physics
  • 16 Downloads

Abstract

We have studied the α-decay chains of superheavy nuclei Z = 125 in the range 265 ≤ A ≤ 336. The nuclei 303–315125 were found to have long half-lives and hence could be sufficient to detect them if synthesized in a laboratory. After identifying the possible isotopes, we have identified the most probable projectile-target combinations by studying the fusion cross section, evaporation residue cross section, compound nucleus formation probability (PCN), and survival probability (PSurv). The selected most probable projectile-target combinations to synthesize superheavy nuclei 303–315125 are Co+Cf, Ni+Bk, and Cu+Cm. We hope that our predictions may be guide for the future experiments in the synthesis of the new superheavy element Z = 125.

Keywords

Superheavy element 

Notes

References

  1. 1.
    S. Hofmann, G. Münzenberg, The discovery of the heaviest elements. Rev. Mod. Phys. 72, 733–767 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    J.H. Hamilton, S. Hofmann, Y.T. Oganessian, Search for superheavy nuclei. Annu. Rev.Nucl. Part. Sci. 63, 383–405 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    V.I. Zagrebaev, W. Greiner, Cross sections for the production of superheavy nuclei. Nucl. Phys. A 944, 257–307 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    V.I. Zagrebaev, Y. Aritomo, M.G. Itkis, Y.T. Oganessian, M. Ohta, Synthesis of superheavy nuclei: how accurately can we describe it and calculate the cross sections? Phys. Rev. C 65, 014607 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Aritomo, T. Wada, M. Ohta, Y. Abe, Fluctuation-dissipation model for synthesis of superheavy elements. Phys. Rev. C 59, 796–809 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    C.W. Shen, G. Kosenko, Y. Abe, Two-step model of fusion for the synthesis of superheavy elements. Phys. Rev. C 66, 061602 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    H.C. Manjunatha, K.N. Sridhar, N. Sowmya, Investigations of the synthesis of the superheavy element Z = 122. Phys. Rev. C 98, 024308 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    A. Diaz-Torres, G.G. Adamian, N.V. Antonenko, W. Scheid, Quasifission process in a transport model for a dinuclear system. Phys. Rev. C 64, 024604 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    Y.T. Oganessian, V.K. Utyonkov, Y.V. Lobanov, F.S. Abdullin, A.N. Polyakov, I.V. Shirokovsky, Y.S. Tsyganov, G.G. Gulbekian, S.L. Bogomolov, B.N. Gikal, A.N. Mezentsev, S. Iliev, V.G. Subbotin, A.M. Sukhov, A.A. Voinov, G.V. Buklanov, K. Subotic, V.I. Zagrebaev, M.G. Itkis, J.B. Patin, K.J. Moody, J.F. Wild, M.A. Stoyer, N.J. Stoyer, D.A. Shaughnessy, J.M. Kenneally, P.A. Wilk, R.W. Lougheed, R.I. Il’kaev, S.P. Vesnovskii, Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactionsU233,238,Pu242, andCm248+Ca48. Phys. Rev. C 70, 064609 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Y.T. Oganessian, F.S. Abdullin, S.N. Dmitriev, J.M. Gostic, J.H. Hamilton, R.A. Henderson, M.G. Itkis, K.J. Moody, A.N. Polyakov, A.V. Ramayya, J.B. Roberto, K.P. Rykaczewski, R.N. Sagaidak, D.A. Shaughnessy, I.V. Shirokovsky, M.A. Stoyer, V.G. Subbotin, A.M. Sukhov, Y.S. Tsyganov, V.K. Utyonkov, A.A. Voinov, G.K. Vostokin, New insights into the Am243+Ca48 reaction products previously observed in the experiments on elements 113, 115, and 117. Phys. Rev. Lett. 108, 022502 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    N.V. Antonenko, E.A. Cherepanov, A.K. Nasirov, V.B. Permjakov, V.V. Volkov, Compound nucleus formation in reactions between massive nuclei: Fusion barrier. Phys. Rev. C 51, 2635–2645 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    G.G. Adamian, N.V. Antonenko, W. Scheid, Model of competition between fusion and quasifission in reactions with heavy nuclei. Nucl. Phys. A 618, 176–198 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    G.G. Adamian, N.V. Antonenko, S.E. Ivanova, Problems in description of fusion of heavy nuclei in the two-center shell model approach. Nucl. Phys. A 646, 29–52 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    V. Zagrebaev, W. Greiner, Synthesis of superheavy nuclei: a search for new production reactions. Phys. Rev. C 78, 034610 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    V. I. Zagrebaev, B. Fornal, S. Leoni, Walter Greiner, Formation of light exotic nuclei in low-energy multinucleon transfer reactions. Phys. Rev. C 89, 054608 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    N. Wang, E.-G. Zhao, W. Scheid, S.-G. Zhou, Theoretical study of the synthesis of superheavy nuclei with Z = 119 and 120 in heavy-ion reactions with trans-uranium targets. Phys. Rev. C 85, 041601(R) (2012)ADSCrossRefGoogle Scholar
  17. 17.
    H.C. Manjunatha, K.N. Sridhar, Survival and compound nucleus probability of super heavy element Z = 117. Eur. Phys. J. A 53, 97 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    H.C. Manjunatha, K.N. Sridhar, A probability of synthesis of the superheavy element Z = 124. Eur. Phys. J. A 53, 196 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    H.C. Manjunatha, K.N. Sridhar, Projectile target combination to synthesis superheavy nuclei Z = 126. Nucl. Phys.A 962, 7–23 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    H.C. Manjunatha, N. Sowmya, Competition between spontaneous fission ternary fission cluster decay and alpha decay in the super heavy nuclei of Z = 126. Nucl. Phys. A 969, 68–82 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    H.C. Manjunatha, Theoretical prediction of probable isotopes of superheavy nuclei of Z = 122. Int. J Mod. Phy. E 25(11), 1650100 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    H.C. Manjunatha, Comparison of alpha decay with fission for isotopes of superheavy nuclei Z = 124. Int. J Mod. Phy. E 25(9), 1650074 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    H.C. Manjunatha, Alpha decay properties of superheavy nuclei Z = 126. Nucl. Phy. A 945, 42–57 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    H.C. Manjunatha, B.M. Chandrika, L. Seenappa, Empirical formula for mass excess of heavy and superheavy nuclei. Mod. Phys. Lett. A 31(28), 1650162 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    H.C. Manjunatha, K.N. Sridhar, Investigation to synthesis more isotopes of superheavy nuclei Z = 118. Nucl. Phys. A 975, 136–153 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    H.C. Manjunatha, N. Sowmya, Parametrisation of the experimental fusion–fission cross-sections. Pramana J. Phys. 90, 62 (2018)ADSCrossRefGoogle Scholar
  27. 27.
    H.C. Manjunatha, Parameterization of fission barrier heights of medium, heavy and super heavy nuclei. Ind. J. Phys. 92, 507–512Google Scholar
  28. 28.
    H.C. Manjunatha, Fusion barrier characteristics of actinides. Nucl. Phys.A 971, 83–94 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    H.C. Manjunatha, N. Sowmya, A study of probable alphaternary fission fragments of 257Fm. J. Rad. Nucl. Chem. 314, 991–999 (2017)CrossRefGoogle Scholar
  30. 30.
    H.C. Manjunatha, K.N. Sridhar, New semi-empirical formula for $ \alpha$ α -decay half-lives of the heavy and superheavy nuclei. Eur. Phys. J. A 53, 156 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    A. Sobiczewski, F.A. Gareev, B.N. Kalinkin, Closed shells for Z > 82 and N > 126 in a diffuse potential well. Phys. Lett. B 22, 500–502 (1966)CrossRefGoogle Scholar
  32. 32.
    H. Meldner, Predictions of new magic regions and masses for super-heavy nuclei from calculations with realistic shell model single particle hamiltonians. Arkiv Fysik 36, 593 (1967)Google Scholar
  33. 33.
    W.D. Mayers, W.J. Swiatecki, Nuclear masses and deformations. Nucl. Phys. 81, 1–60 (1966)CrossRefGoogle Scholar
  34. 34.
    S.G. Nilsson, C.F. Tsang, A. Sobiczewski, Z. Szymański, S. Wycech, C. Gustafson, I.L. Lamm, P. Möller, B. Nilsson, On the nuclear structure and stability of heavy and superheavy elements. Nucl. Phys. A 131, 1–66 (1969)ADSCrossRefGoogle Scholar
  35. 35.
    U. Mosel, W. Greiner, On the stability of superheavy nuclei against fission. Z. Phys. 222, 261–282 (1969)ADSCrossRefGoogle Scholar
  36. 36.
    G.T. Seaborg, Prospects for further considerable extension of the periodic table. J. Chem. Educ. 46, 626 (1969)CrossRefGoogle Scholar
  37. 37.
    V.Y. Denisov, Interaction potential between heavy ions. Phys. Lett. B 526, 315–321 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    V.I. Zagrebaev, A.V. Karpov, I.N. Mishustin, W. Greiner, Production of heavy and superheavy neutron-rich nuclei in neutron capture processes. Phys. Rev. C 84, 044617 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    W.D. Myers, W.J. Swiatecki, Nucleus-nucleus proximity potential and superheavy nuclei. Phys. Rev. C 62, 044610 (2000)ADSCrossRefGoogle Scholar
  40. 40.
    C.Y. Wong, Fusion threshold energy in heavy-ion reactions. Phys. Lett. B 42, 186–190 (1972)ADSCrossRefGoogle Scholar
  41. 41.
    W. Loveland, Synthesis of transactinide nuclei using radioactive beams. Phys. Rev. C 76, 014612 (2007)Google Scholar
  42. 42.
    P. Armbruster, Nuclear structure in cold rearrangement processes in fission and fusion. Rep. Prog. Phys. 62, 465–525 (1999)ADSCrossRefGoogle Scholar
  43. 43.
    G.G. Adamian, N.V. Antonenko, W. Scheid, Isotopic dependence of fusion cross sections in reactions with heavy nuclei. Nucl. Phys. A 678, 24–38 (2000)ADSCrossRefGoogle Scholar
  44. 44.
    Z.H. Liu, J.D. Bao, Systematical calculations of the136Xe(136Xe,xn)272−xHs reaction: effects of quasifission in the early stage of the fusion process. Phys. Rev. C 81, 044606 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    J.D. Jackson, A schematic model for (p,xn) cross sections in heavy elements. Can. J. Phys. 34, 767–779 (1956)ADSCrossRefGoogle Scholar
  46. 46.
    R. Vandenbosch, J.R. Huizenga, Nuclear Fission (Academic Press, New York, 1973)Google Scholar
  47. 47.
    M. Kowal, P. Jachimowicz, J. Skalski, Ground State and Saddle Point: masses and deformations for even-even superheavy nuclei with 98 < Z < 126 and 134 < N < 192. arXiv:1203.5013Google Scholar
  48. 48.
    V.E. Viola Jr., G.T. Seaborg, Nuclear systematics of the heavy elements—II Lifetimes for alpha, beta and spontaneous fission decay. J. Inorg. Nucl. Chem. 28, 741–761 (1966)CrossRefGoogle Scholar
  49. 49.
    D. N. Poenaru, R.A. Gherghescu, W. Greiner, Single universal curve for cluster radioactivities and α decay. Phys. Rev. C 83, 014601 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    G. Royer, Alpha emission and spontaneous fission through quasi-molecular shapes. J. Phys. G: Nucl. Part. Phys. 26, 1149–1170 (2000)ADSCrossRefGoogle Scholar
  51. 51.
    D. Ni, Z. Ren, T. Dong, C. Xu, Unified formula of half-lives forαdecay and cluster radioactivity. Phys. Rev. C 78, 044310 (2008)ADSCrossRefGoogle Scholar
  52. 52.
    V. Yu. Denisov, A.A. Khudenko, α-decay halflives: Empirical relations. Phys. Rev. C 79, 054614 (2009); 82, 059901 (2010)ADSCrossRefGoogle Scholar
  53. 53.
    S. Hofmann et al., The new element 112. Z. Phys. A 354(2), 229 (1996)ADSCrossRefGoogle Scholar
  54. 54.
    Y.T. Oganessian, V.K. Utyonkov, Y.V. Lobanov, F.S. Abdullin, A.N. Polyakov, I.V. Shirokovsky, Y.S. Tsyganov, G.G. Gulbekian, S.L. Bogomolov, B.N. Gikal, A.N. Mezentsev, S. Iliev, V.G. Subbotin, A.M. Sukhov, G.V. Buklanov, K. Subotic, M.G. Itkis, K.J. Moody, J.F. Wild, N.J. Stoyer, M.A. Stoyer, R.W. Lougheed, Synthesis of superheavy nuclei in the 48Ca+244Pu reaction. Phys. Rev. Lett. 83, 3154–3157 (1999)ADSCrossRefGoogle Scholar
  55. 55.
    Yu. Ts. Oganessian et al., Experiments on the synthesis of element 115 in the reaction 243Am(48Ca,xn)291−x115. Phys. Rev. C 69, 021601 (2004)ADSCrossRefGoogle Scholar
  56. 56.
    Y.T. Oganessian, V.K. Utyonkov, Y.V. Lobanov, F.S. Abdullin, A.N. Polyakov, I.V. Shirokovsky, Y.S. Tsyganov, G.G. Gulbekian, S.L. Bogomolov, B.N. Gikal, A.N. Mezentsev, S. Iliev, V.G. Subbotin, A.M. Sukhov, O.V. Ivanov, G.V. Buklanov, K. Subotic, A.A. Voinov, M.G. Itkis, K.J. Moody, J.F. Wild, N.J. Stoyer, M.A. Stoyer, R.W. Lougheed, C.A. Laue, Synthesis of superheavy nuclei in the reactions of 244Pu and 248Cm with 48Ca. Eur. Phys. J. A 15, 201–204 (2002)ADSCrossRefGoogle Scholar
  57. 57.
    V. Ninov, K.E. Gregorich, W. Loveland, A. Ghiorso, D.C. Hoffman, D.M. Lee, H. Nitsche, W.J. Swiatecki, U.W. Kirbach, C.A. Laue, J.L. Adams, J.B. Patin, D.A. Shaughnessy, D.A. Strellis, P.A. Wilk, Observation of superheavy nuclei produced in the reaction of K86r with P208b. Phys. Rev. Lett. 83, 1104–1107 (1999)ADSCrossRefGoogle Scholar
  58. 58.
    S. Hofmann, Heavy and superheavy nuclei. Z. Phys. A 358, 125 (1997)ADSCrossRefGoogle Scholar
  59. 59.
    Yu. Ts. Oganessian et al., Synthesis of a new element with atomic number Z = 117. Phys. Rev. Lett. 104, 142502Google Scholar
  60. 60.
    Yu. Ts. Oganessian et al., Attempt to produce element 120 in the 244Pu + 58Fe reaction. Phys. Rev. C 79, 024603 (2009)ADSCrossRefGoogle Scholar
  61. 61.
    Y.T. Oganessian, F.S. Abdullin, S.N. Dmitriev, J.M. Gostic, J.H. Hamilton, R.A. Henderson, M.G. Itkis, K.J. Moody, A.N. Polyakov, A.V. Ramayya, J.B. Roberto, K.P. Rykaczewski, R.N. Sagaidak, D.A. Shaughnessy, I.V. Shirokovsky, M.A. Stoyer, N.J. Stoyer, V.G. Subbotin, A.M. Sukhov, Y.S. Tsyganov, V.K. Utyonkov, A.A. Voinov, G.K. Vostokin, Investigation of the 243Am+48Ca reaction products previously observed in the experiments on elements 113, 115, and 117. Phys. Rev. C 87, 014302 (2013)ADSCrossRefGoogle Scholar
  62. 62.
    Y.T. Oganessian, V.K. Utyonkov, S.N. Dmitriev, Y.V. Lobanov, M.G. Itkis, A.N. Polyakov, Y.S. Tsyganov, A.N. Mezentsev, A.V. Yeremin, A.A. Voinov, E.A. Sokol, G.G. Gulbekian, S.L. Bogomolov, S. Iliev, V.G. Subbotin, A.M. Sukhov, G.V. Buklanov, S.V. Shishkin, V.I. Chepygin, G.K. Vostokin, N.V. Aksenov, M. Hussonnois, K. Subotic, V.I. Zagrebaev, K.J. Moody, J.B. Patin, J.F. Wild, M.A. Stoyer, N.J. Stoyer, D.A. Shaughnessy, J.M. Kenneally, P.A. Wilk, R.W. Lougheed, H.W. Gäggeler, D. Schumann, H. Bruchertseifer, R. Eichler, Synthesis of elements 115 and 113 in the reaction Am243+Ca48. Phys. Rev. C 72, 034611 (2005)ADSCrossRefGoogle Scholar
  63. 63.
    Y.T. Oganessian, V.K. Utyonkov, Y.V. Lobanov, F.S. Abdullin, A.N. Polyakov, I.V. Shirokovsky, Y.S. Tsyganov, G.G. Gulbekian, S.L. Bogomolov, B.N. Gikal, A.N. Mezentsev, S. Iliev, V.G. Subbotin, A.M. Sukhov, A.A. Voinov, G.V. Buklanov, K. Subotic, V.I. Zagrebaev, M.G. Itkis, J.B. Patin, K.J. Moody, J.F. Wild, M.A. Stoyer, N.J. Stoyer, D.A. Shaughnessy, J.M. Kenneally, R.W. Lougheed, Measurements of cross sections for the fusion-evaporation reactions Pu244(Ca48,xn)292−x114 and Cm245(Ca48,xn)293−x116. Phys. Rev. C 69, 054607 (2004)ADSCrossRefGoogle Scholar
  64. 64.
    Y.T. Oganessian, F.S. Abdullin, P.D. Bailey, D.E. Benker, M.E. Bennett, S.N. Dmitriev, J.G. Ezold, J.H. Hamilton, R.A. Henderson, M.G. Itkis, Y.V. Lobanov, A.N. Mezentsev, K.J. Moody, S.L. Nelson, A.N. Polyakov, C.E. Porter, A.V. Ramayya, F.D. Riley, J.B. Roberto, M.A. Ryabinin, K.P. Rykaczewski, R.N. Sagaidak, D.A. Shaughnessy, I.V. Shirokovsky, M.A. Stoyer, V.G. Subbotin, R. Sudowe, A.M. Sukhov, Y.S. Tsyganov, V.K. Utyonkov, A.A. Voinov, G.K. Vostokin, P.A. Wilk, Synthesis of a new element with atomic number Z = 117. Phys. Rev. Lett. 104, 142502 (2010)ADSCrossRefGoogle Scholar
  65. 65.
    Yu. Ts. Oganessian et al., Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm + 48Ca fusion reactions. Phys. Rev. 74, 044602 (2006)Google Scholar

Copyright information

© Sociedade Brasileira de Física 2019

Authors and Affiliations

  • K. N. Sridhar
    • 1
    • 2
  • H. C. Manjunatha
    • 3
    Email author
  • H. B. Ramalingam
    • 4
  1. 1.Department of PhysicsGovernment First Grade CollegeKolarIndia
  2. 2.Research and Development CentreBharathiar UniversityCoimbatoreIndia
  3. 3.Department of PhysicsGovernment College for WomenKolarIndia
  4. 4.Department of PhysicsGovernment Arts CollegeUdumalpetIndia

Personalised recommendations