Advertisement

Brazilian Journal of Physics

, Volume 49, Issue 1, pp 97–102 | Cite as

Joint Effect of Coherence and Polarization on the Quantification of Visibility and Distinguishability

  • Bertúlio de Lima BernardoEmail author
General and Applied Physics
  • 25 Downloads

Abstract

The wave-particle duality appeared as a quintessential concept in quantum mechanics since the inception of the theory, yet it still attracts attention due to its nonintuitive consequences. In the case of light, this property is known to be manifested in a simplified form in two-way interferometers through the investigation of complementary properties like visibility and distinguishability. Here, we derive two measurable quantifiers of these properties in terms of the entries of the density operator of a general quantum photonic state which encapsulate simultaneously the influence of both coherence and polarization. We observe that these quantifiers fulfill the Englert–Greenberger–Yasin inequality.

Keywords

Interferometry Complementarity principle Photonic mixed states 

Notes

Funding Information

The author received financial support from the Brazilian funding agency CNPq, Grant Number 309292/2016-6.

References

  1. 1.
    N. Bohr, in Quantum Theory and Measurement, ed. by J.A. Wheeler, W.H. Zurek (Princeton University Press, Princeton, 1984), pp. 9–49Google Scholar
  2. 2.
    N. Bohr, Nature. 121, 580 (1928)ADSCrossRefGoogle Scholar
  3. 3.
    G. Jaeger, A. Shimony, L. Vaidman, Phys. Rev. A. 51, 54 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    M.O. Scully, B.-G. Englert, H. Walther, Nature. 351, 111 (1991)ADSCrossRefGoogle Scholar
  5. 5.
    L. Mandel, Opt. Lett. 16, 1882 (1991)ADSCrossRefGoogle Scholar
  6. 6.
    D.M. Greenberger, A. Yasin, Phys. Lett. A. 128, 391 (1988)ADSCrossRefGoogle Scholar
  7. 7.
    W.K. Wootters, W.H. Zurek, Phys. Rev. D. 19, 473 (1979)ADSCrossRefGoogle Scholar
  8. 8.
    B.-G. Englert, Phys. Rev. Lett. 77, 2154 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, J.-F. Roch, Phys. Rev. Lett. 100, 220402 (2008)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Y. Yuan, Z. Hou, Y.-Y. Zhao, H.-S. Zhong, G.-Y. Xiang, C.-F. Li, G.-C. Guo, Opt. Express. 26, 4470 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    R.P. Feynman, R.B. Leighton. Sands, M the Feynman Lectures on Physics, vol. III, Quantum mechanics (Addison-Wesley, Reading, 1965)Google Scholar
  12. 12.
    K. Banaszek, P. Horodecki, M. Karpinski, C. Radzewicz1, Nat. Commun. 4, 2594 (2013)Google Scholar
  13. 13.
    J. Prabhu Tej, A.R. Usha Devi, H.S. Karthik, Sudha, A.K. Rajagopal, Phys. Rev. A. 89, 062116 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    J.H. Eberly, X.-F. Qian, A.N. Vamivakas, Optica. 4, 1113 (2017)CrossRefGoogle Scholar
  15. 15.
    F. De Zela, Optica. 5, 243 (2018)CrossRefGoogle Scholar
  16. 16.
    A. Norrman, K. Blomstedt, T. Setälä, A.T. Friberg, Phys. Rev Lett. 119, 040401 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    B. de Lima Bernardo, Phys. Lett. A. 381, 2239 (2017)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    E. Hecht. Optics, 4th (Addison-Wesley, San Francisco, 2002)Google Scholar
  19. 19.
    G. Baym, Lectures on quantum mechanics (W. A. Benjamin, New York, 1974)Google Scholar

Copyright information

© Sociedade Brasileira de Física 2018

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidade Federal da ParaíbaJoão PessoaBrazil
  2. 2.Departamento de FísicaUniversidade Federal de Campina GrandeCampina GrandeBrazil

Personalised recommendations