Advertisement

Brazilian Journal of Physics

, Volume 49, Issue 2, pp 221–231 | Cite as

Face to Face Collisions of Ion Acoustic Multi-Solitons and Phase Shifts in a Dense Plasma

  • M. G. HafezEmail author
General and Applied Physics
  • 37 Downloads

Abstract

This work investigates the interactions among ion acoustic (IA) single- and multi-soliton and their corresponding phase shifts in an unmagnetized plasma composed of degenerate electrons, positrons, and positive ions. Two-sided Korteweg-de Vries (KdV) equations are derived by employing the extended Poincaré-Lighthill-Kuo (PLK) method for the stretched coordinates. The single- and multi-soliton solutions of the KdV equations are constructed by using the Hirota’s method. The phase shifts are determined for two-, four-, six-, and eight-IA scattering solitons. The effect of positron concentration on electrostatic IA resonances due to the interactions among solitons and their corresponding phase shifts are investigated.

Keywords

Multi-solitons Two-sided KdV equations Phase shifts Dense plasma 

References

  1. 1.
    Y.D. Jung, Quantum-mechanical effects on electron-electron scattering in dense high-temperature plasmas. Phys. Plasmas. 8(8), 3842 (2001).  https://doi.org/10.1063/1.1386430
  2. 2.
    M. Marklund, P.K. Shukla, Nonlinear collective effects in photon-photon and photon-plasma interactions. Rev. Mod. Phys. 78, 591–640 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    T.C. Killan, Cool vibes. Nature 441, 297–298 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    K. Becker, K. Koutsospyros, S.M. Yin, C. Christodoulatos, N. Abramzon, J.C. Joaquin, G. Brelles Mariono, Nature 47, B513 (2005)Google Scholar
  5. 5.
    P.A. Markowich, C.A. Ringhofer, C. Schmeiser, Semiconductor Equations (Springer, New York, 1990), p. 65CrossRefzbMATHGoogle Scholar
  6. 6.
    M. Bonitz, D. Semkat, A. Filinov, V. Golubnychyi, D. Kremp, D.O. Gericke, M.S. Murillo, V. Filinov, V. Fortov, W. Hoyer, Theory and simulation of strong correlations in quantum Coulomb systems. J. Phys. A 36, 5921–5930 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    L.O. Silva, R. Bingham, J.M. Dawson, J.T. Mendonca, P.K. Shukla, Neutrino driven streaming instabilities in a dense plasma. Phys. Rev. Lett. 83, 2703–2706 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    S. Chandrasekhar, An Introduction to the Study of Stellar Structure (Ill. (The University of Chicago Press, Chicago, 1939)zbMATHGoogle Scholar
  9. 9.
    S.L. Shapiro, S.A. Teukolsky, Black Holes, White Dwarfs and Neutron Stars (Wiley, NewYork, 1983)CrossRefGoogle Scholar
  10. 10.
    A. Esfandyari-Kalejahi, M. Akbari-Moghanjoughi, E. Saberian, Relativistic degeneracy effect on propagation of arbitrary amplitude ion-acoustic solitons in Thomas-Fermi plasmas. Plasma Fusion Res. 5, 045 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    M.G. Hafez, M.R. Talukder, M.H. Ali, New analytical solutions for propagation of small but finite amplitude ion-acoustic waves in a dense plasma. Wave Random Complex 26, 68 (2016)Google Scholar
  12. 12.
    G. Mandal, K. Roy, A. Paul, A. Saha, and P. Chatterjee, Overtaking collision and phase shifts of dust acoustic multi-solitons in a four component dusty plasma with nonthermal electrons. Naturforsch.70(9), 703 (2015)Google Scholar
  13. 13.
    U.N. Ghosh, K. Roy, P. Chatterjee, Head-on collision of dust acoustic solitary waves in a four-component dusty plasma with nonthermal ions. Phys. Plasmas 18, 103703 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    S. Parveen, S. Mahmood, M. Adnan, A. Qamar, Characteristic study of head-on collision of dust-ion acoustic solitons of opposite polarity with kappa distributed electrons. Phys. Plasmas 23, 092122 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    K. Roy, M.K. Ghorui, P. Chatterjee, M. Tribeche, Head-on collision of ion-acoustic multi-solitons in e-p-i plasma. Commun. Theor. Phys. 65, 237–246 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    N.S. Saini, K. Singh, Head-on collision of two dust ion acoustic solitary waves in a weakly relativistic multicomponent superthermal plasma. Phys. Plasmas 23, 103701 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    A. Saha, P. Chatterjee, Propagation and interaction of dust acoustic multi-soliton in dusty plasmas with q-nonextensive electrons and ions. Astrophys. Space Sci. 353, 169–177 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    N.J. Zabusky, M.D. Kruskal, Interaction of “solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)ADSCrossRefzbMATHGoogle Scholar
  19. 19.
    J.K. Xue, Head-on collision of dust-acoustic solitary waves. Phys. Rev. E 69, 016403 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    P. Harvey, C. Durniak, D. Samsonov, G. Morfill, Soliton interaction in a complex plasma. Phys. Rev. E 81, 057401 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    K. Roy, S.K. Ghosh, P. Chatterjee, Two-soliton and three-soliton interactions of electron acoustic waves in quantum plasma. Pramana J. Phys. 86, 873–883 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    K. Roy, S. Choudhury, P. Chatterjee, C.S. Wong, Face-to-face interaction of multisolitons in spin-1/2 quantum plasma. Pramana J. Phys. 88, 18 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    M.S. Alam, M.G. Hafez, M.R. Talukder, M.H. Ali, Effects of two-temperature ions on head-on collision and phase shifts of dust acoustic single- and multi-solitons in dusty plasma. Phys Plasmas 24, 103705 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    M.S. Alam, M.G. Hafez, M.R. Talukder, M.H. Ali, Interactions of ion acoustic multi-soliton and rogue wave with Bohm quantum potential in degenerate plasma. Chin Phys B 26, 095203 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    C.H. Su, R.M. Mirie, On head-on collisions between two solitary waves. J. Fluid Mech. 98(3), 509 (1980).  https://doi.org/10.1017/S0022112080000262
  26. 26.
    A.E. Ozden, H. Demiray, Re-visiting the head-on collision problem between two solitary waves in shallow water. Int J Non Linear Mech 69, 66–70 (2015)CrossRefGoogle Scholar
  27. 27.
    F. Verheest, Head-on collisions of electrostatic solitons in nonthermal plasmas. Phys. Rev. E. 86, 036402 (2012)Google Scholar
  28. 28.
    S. Parveen, S. Mahmood, M. Adnan, A. Qamar, Oblique interaction of dust-ion acoustic solitons with superthermal electrons in a magnetized plasma. J. Phys. Soc. Jpn. 87, 014502 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    S.A. El-Tantawy, W.M. Moslem, R. Sabry, S.K. El-Labany, M. ElMetwally, R. Schlickeiser, Head-on collision of ion-acoustic solitons in an ultracold neutral plasma. Astrophys Space Sci. 350, 175–184 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    M.S. Alam, M.G. Hafez, M.R. Talukder, M.H. Ali, Head-on collision of ion acoustic solitary waves in electron-positron-ion nonthermal plasmas for weakly and highly relativistic regimes. Phys Plasmas 24, 072901 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    R. Hirota, The Direct Method in the Soliton Theory (Cambridge University Press, Cambridge, 2004)CrossRefzbMATHGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2019

Authors and Affiliations

  1. 1.Department of MathematicsChittagong University of Engineering and TechnologyChittagongBangladesh

Personalised recommendations