Advertisement

Brazilian Journal of Physics

, Volume 43, Issue 4, pp 268–280 | Cite as

Physics and Its Interfaces with Medicinal Chemistry and Drug Design

  • Ricardo N. Santos
  • Adriano D. AndricopuloEmail author
General and Applied Physics

Abstract

Medicinal chemistry is a multidisciplinary subject that integrates knowledge from a variety of fields of science, including, but not limited to, chemistry, biology, and physics. The area of drug design involves the cooperative work of scientists with a diverse range of backgrounds and technical skills, trying to tackle complex problems using an integration of approaches and methods. One important contribution to this field comes from physics through studies that attempt to identify and quantify the molecular interactions between small molecules (drugs) and biological targets (receptors), such as the forces that govern the interactions, the thermodynamics of the drug–receptor interactions, and so on. In this context, the interfaces of physics, medicinal chemistry, and drug design are of vital importance for the development of drugs that not only have the right chemistry but also the right intermolecular properties to interact at the macromolecular level, providing useful information about the principles and molecular mechanisms underlying the therapeutic action of drugs. This article highlights some of the most important connections between physics and medicinal chemistry in the design of new drugs.

Keywords

Medicinal chemistry Physics Drug design Molecular interactions 

Notes

Acknowledgments

We thank the São Carlos Institute of Physics (Instituto de Física de São Carlos) for providing an interesting and unique interdisciplinary research environment in the area of medicinal chemistry and drug design.

Supplementary material

ESM 1

(MPEG 30791 kb)

ESM 2

(MPEG 49362 kb)

ESM 3

(MPEG 59236 kb)

References

  1. 1.
    WHO, World Health Statistics Report. (World Health Organization, 2012), http://www.who.int/gho/publications/en/. Accessed 8 May 2013
  2. 2.
    T.L. Moda, L.G. Torres, A.E. Carrara, A.D. Andricopulo, Bioinformatics 24, 2270 (2008)CrossRefGoogle Scholar
  3. 3.
    P. Kirkpatrick, Nat. Rev. Drug. Discov. 8, 196 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    S.M. Paul, D.S. Mytelka, C.T. Dunwiddie, C.C. Persinger, B.H. Munos, S.R. Lindborg, A.L. Schacht, Nat. Rev. Drug Discov. 9, 203 (2010)Google Scholar
  5. 5.
    Y. Zhao, E.B. Butler, M. Tan, Cell Death Dis. 4, e532 (2013)CrossRefGoogle Scholar
  6. 6.
    R.N. Santos, R.V. Guido, G. Oliva, L.C. Dias, A.D. Andricopulo, Med. Chem. 7, 155 (2011)CrossRefGoogle Scholar
  7. 7.
    L.G. Ferreira, R.N. Santos, A.D. Andricopulo, J. Braz. Chem. Soc. 24, 201 (2013)CrossRefGoogle Scholar
  8. 8.
    M. Baker, Nat. Rev. Drug Discov. 12, 5 (2013)CrossRefGoogle Scholar
  9. 9.
    R.V.C. Guido, G. Oliva, A.D. Andricopulo, Pure Appl. Chem. 84, 1857 (2012)CrossRefGoogle Scholar
  10. 10.
    C. Harrison, Nat. Rev. Drug Discov. 12, 101 (2013)CrossRefGoogle Scholar
  11. 11.
    T.I. Oprea, R. Mannhold, H. Kubinyi, G. Folkers, Chemoinformatics in drug discovery, 1st edn. (Wiley, Weinheim, 2005), pp. 59–101CrossRefGoogle Scholar
  12. 12.
    B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular biology of the cell, 5th edn. (Garland Science, New York, 2008), p. 63Google Scholar
  13. 13.
    M. Rask-Andersen, M.S. Almén, H.B. Schiöth, Nat. Rev. Drug Discov. 10, 579 (2011)CrossRefGoogle Scholar
  14. 14.
    D.L. Nelson, M.M. Cox, Lehninger principles of biochemistry, 5th edn. (W.H. Freeman, New York, 2009), pp. 71–85CrossRefGoogle Scholar
  15. 15.
    F. Chiti, C.M. Dobson, Annu. Rev. Biochem. 75, 333 (2006)CrossRefGoogle Scholar
  16. 16.
    A.M. Bode, Z. Dong, Nat. Rev. Cancer 9, 508 (2009)CrossRefGoogle Scholar
  17. 17.
    P.S. Steeg, Nat Med. 12, 895 (2006)CrossRefGoogle Scholar
  18. 18.
    Cancer Facts & Figures 2013. (American Cancer Society, 2013), http://www.cancer.org/research/cancerfactsfigures/cancerfactsfigures/cancer-facts-figures-2013. Accessed 11 May 2013
  19. 19.
    P.B. Schiff, J. Fant, S.B. Horwitz, Nature 277, 665 (1979)ADSCrossRefGoogle Scholar
  20. 20.
    J.R. Jackson, D.R. Patrick, M.M. Dar, P.S. Huang, Nat. Rev. Cancer 7, 107 (2007)CrossRefGoogle Scholar
  21. 21.
    M.A. Jordan, L. Wilson, Nat. Rev. Cancer 4, 253 (2004)CrossRefGoogle Scholar
  22. 22.
    A.L. Risinger, F.J. Giles, S.L. Mooberry, Cancer Treat. Rev. 35, 255 (2009)CrossRefGoogle Scholar
  23. 23.
    A.E. Prota, K. Bargsten, D. Zurwerra, J.J. Field, J.F. Díaz, K.H. Altmann, M.O. Steinmetz, Science 339, 587 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    D. Mastropaolo, A. Camerman, Y. Luo, G.D. Brayer, N. Camerman, Proc. Natl. Acad. Sci. USA 92, 6920 (1995)ADSCrossRefGoogle Scholar
  25. 25.
    J.J. Field, J.F. Díaz, J.H. Miller, Chem. Biol. 20, 301 (2013)CrossRefGoogle Scholar
  26. 26.
    D.B. Kitchen, H. Decornez, J.R. Furr, J. Bajorath, Nat. Rev. Drug Discov. 3, 935 (2004)CrossRefGoogle Scholar
  27. 27.
    X.Y. Meng, H.X. Zhang, M. Mezei, M. Cui, Curr. Comput. Aided Drug Des. 7, 146 (2011)CrossRefGoogle Scholar
  28. 28.
    M. Lapelosa, E. Gallicchio, R.M. Levy, J. Chem. Theory Comput. 8, 47 (2012)CrossRefGoogle Scholar
  29. 29.
    R. Macarron, M.N. Banks, D. Bojanic, D.J. Burns, D.A. Cirovic, T. Garyantes, D.V. Green, R.P. Hertzberg, W.P. Janzen, J.W. Paslay, U. Schopfer, G.S. Sittampalam, Nat. Rev. Drug Discov. 10, 188 (2011)CrossRefGoogle Scholar
  30. 30.
    M. Valli, R.N. dos Santos, L.D. Figueira, C.H. Nakajima, I. Castro-Gamboa, A.D. Andricopulo, V.S. Bolzani, J. Nat. Prod. 76, 439 (2013)CrossRefGoogle Scholar
  31. 31.
    J.J. Irwin, T. Sterling, M.M. Mysinger, E.S. Bolstad, R.G. Coleman, J. Chem. Inf. Model. 52, 1757 (2012)CrossRefGoogle Scholar
  32. 32.
    A.R. Leach, Molecular modelling: principles and applications, 2nd edn. (Prentice-Hall, New Jersey, 2001), pp. 165–247Google Scholar
  33. 33.
    F.C. Bernstein, T.F. Koetzle, G.J. Williams, E.E. Meyer Jr., M.D. Brice, J.R. Rodgers, O. Kennard, T. Shimanouchi, M. Tasumi, J. Mol. Biol. 112, 535 (1977)CrossRefGoogle Scholar
  34. 34.
    M. Rarey, B. Kramer, T. Lengauer, G. Klebe, J. Mol. Biol. 261, 470 (1996)CrossRefGoogle Scholar
  35. 35.
    I. Halperin, B. Ma, H. Wolfson, R. Nussinov, Proteins 47, 409 (2002)CrossRefGoogle Scholar
  36. 36.
    A.R. Leach, V.J. Gillet, An introduction to chemoinformatics, 1st edn. (Springer, Dordrecht, 2007), pp. 159–181CrossRefGoogle Scholar
  37. 37.
    E.S. Istvan, J. Deisenhofer, Science 292, 1160 (2001)ADSCrossRefGoogle Scholar
  38. 38.
    M.M.A. Ajay, J. Med. Chem. 38, 4953 (1995)CrossRefGoogle Scholar
  39. 39.
    R.A. Copeland, Evaluation of enzyme inhibitors in drug discovery: a guide for medicinal chemists and pharmacologists, 2nd edn. (Wiley, New Jersey, 2013), pp. 1–54CrossRefGoogle Scholar
  40. 40.
    J. De Heer, Phenomenological thermodynamics with applications to chemistry, 4th edn. (W. H. Freeman, New York, 1990), pp. 5–60Google Scholar
  41. 41.
    D.A. Pearlman, P.A. Kollman, J. Chem. Phys. 91, 7831 (1989)ADSCrossRefGoogle Scholar
  42. 42.
    A. Hinchliffe, Molecular modelling for beginners, 2nd edn. (Wiley, London, 2008), pp. 49–63Google Scholar
  43. 43.
    K.M. Merz, D. Ringe, C.H. Reynolds, Drug design: structure- and ligand-based approaches, 1st edn. (Cambridge University Press, Cambridge, 2010), pp. 61–119CrossRefGoogle Scholar
  44. 44.
    M. Born, J.R. Oppenheimer, Ann. Phys. 389, 457 (1927)CrossRefGoogle Scholar
  45. 45.
    P. Graham, Introduction to medicinal chemistry, 5th edn. (Oxford University Press, New York, 2013), pp. 1–28Google Scholar
  46. 46.
    C. Bissantz, B. Kuhn, M. Stahl, J. Med. Chem. 53, 5061 (2010)CrossRefGoogle Scholar
  47. 47.
    C.M. Breneman, K.B. Wiberg, J. Comput. Chem. 11, 361 (1990)CrossRefGoogle Scholar
  48. 48.
    M. Rigby, E.B. Smith, W.A. Wakeham, G.C. Maitland, An introduction to intermolecular forces (Clarendon Press, Oxford, 1986), pp. 3–80Google Scholar
  49. 49.
    J. Gasteiger, M. Marsili, Tetrahedron 36, 3219 (1980)CrossRefGoogle Scholar
  50. 50.
    K.E. van Holde, C. Johnson, P.S. Ho, Principles of physical biochemistry, 2nd edn. (Prentice-Hall, New Jersey, 2006), pp. 99–103Google Scholar
  51. 51.
    M.W. Freyer, E.A. Lewis, Methods Cell. Biol. 84, 79 (2008)CrossRefGoogle Scholar
  52. 52.
    P.O. Tsvetkov, A.A. Makarov, S. Malesinski, V. Peyrot, F. Devred, Biochimie 94, 916 (2012)CrossRefGoogle Scholar
  53. 53.
    B.M. Baker, K.P. Murphy, Biophys. J. 71, 2049 (1996)ADSCrossRefGoogle Scholar
  54. 54.
    E. Freire, Drug Discov. Today Technol. 1, 295 (2004)CrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Física 2013

Authors and Affiliations

  1. 1.Instituto de Física de São CarlosUniversidade de São PauloSão CarlosBrazil

Personalised recommendations