Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Multiple dipole source localization of EEG measurements using particle filter with partial stratified resampling

  • 13 Accesses

Abstract

Tracking and detection of neural activity has numerous applications in the medical research field. By considering neural sources, it can be monitored by electroencephalography (EEG). In this paper, we focus primarily on developing advanced signal processing methods for locating neural sources. Due to its high performance in state estimation and tracking, particle filter was used to locate neural sources. However, particle degeneracy limits the performance of particle filters in the most utmost situations. A few resampling methods were subsequently proposed to ease this issue. These resampling methods, however, take on heavy computational costs. In this article, we aim to investigate the Partial Stratified Resampling algorithm which is time-efficient that can be used to locate neural sources and compare them to conventional resampling algorithms. This work is aimed at reflecting on the capabilities of various resampling algorithms and estimating the performance of locating neural sources. Simulated data and real EEG data are used to conduct evaluation and comparison experiments.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Antelis J, Minguez J. Dynamic solution to the EEG source localization problem using Kalman filters and particle filters. In: International conference of the IEEE engineering in medicine and biology society. 2009;77–80.

  2. 2.

    Arulampalam MS, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process. 2002;50(2):174–88. https://doi.org/10.1109/78.978374.

  3. 3.

    Baillet S, Mosher JC, Leahy RM. Electromagnetic brain mapping. IEEE Signal Process Mag. 2001;18(6):14–30.

  4. 4.

    Bolic M, Djuric PM, Hong S. Resampling algorithms for particle filters: a computational complexity perspective. EURASIP J Appl Signal Process. 2004. https://doi.org/10.1155/s1110865704405149.

  5. 5.

    Campi C, Pascarella A, Sorrentino A, et al. A Rao-Blackwellized particle filter for magnetoencephalography. Inverse Prob. 2008;24:25015–23. https://doi.org/10.1088/0266-5611/24/2/025023.

  6. 6.

    Campi C, Pascarella A, Sorrentino A, et al. Highly automated dipole estimation (HADES). Comput Intell Neurosci. 2011. https://doi.org/10.1155/2011/982185.

  7. 7.

    Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics. J Neurosci Methods. 2004;134(1):9–21.

  8. 8.

    Douc R, Cappe O. Comparison of resampling schemes for particle filtering. In: Proceedings ISPA 4th international symposium on image and signal processing and analysis. 2005;64–9. https://doi.org/10.1109/ispa.2005.195385.

  9. 9.

    Doucet A, De Freitas N, Gordon NJ. Sequential Monte-Carlo methods in practice. New York: Springer; 2001. https://doi.org/10.1007/978-1-4757-3437-9.

  10. 10.

    Ebersole JS, Hawes-Ebersole S. Clinical application of dipole models in the localization of epileptiform activity. J Clin Neurophysiol. 2007;24(2):120–9.

  11. 11.

    Ebinger B, Bouaynaya N, Georgieva P, et al. EEG dynamic source localization using marginalized particle filtering. In: 2015 IEEE international conference on bioinformatics and biomedicine (BIBM), Washington, DC. 2015;454–457. https://doi.org/10.1109/bibm.2015.7359727.

  12. 12.

    Fearnhead P. Sequential Monte Carlo methods in filter theory. PhD thesis, University of Oxford. 1998.

  13. 13.

    Galka A, Yamashita O, Ozaki T, et al. A solution to the dynamical inverse problem of EEG generation using spatiotemporal Kalman filtering. NeuroImage. 2004;23:435–53.

  14. 14.

    Georgieva P, Bouaynaya N, Silva F, Mihaylova L, Jain LC. A beamformerparticle filter framework for localization of correlated EEG sources. IEEE J Biomed Health Inform. 2016;20(3):880–92.

  15. 15.

    Georgieva P, Mihaylova L, Bouaynaya N, et al. Particle filters and beamforming for EEG source estimation. In: IEEE world congress on computational intelligence, international joint conference on neural networks, Brisbane. 2012;10–15. https://doi.org/10.1109/ijcnn.2012.6252516.

  16. 16.

    Gordon NJ, Salmon DJ, Smith AFM. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEEE Proc Radar Signal Process. 1992;140:107–13.

  17. 17.

    Hamalainen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa O. Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys. 1993;65:413–97.

  18. 18.

    Hol JD. Resampling in Particle Filters, report, Linkoping. 2004.

  19. 19.

    Hol JD, Schon TB, Gustafsson F. On resampling algorithms for particle filters. IEEE Nonlinear Stat Signal Process Workshop. 2006;2006:79–82.

  20. 20.

    Karkulali P, Nagarajan R. A holistic comparison of the different resampling algorithms for particle filter based prognosis using lithium ion batteries as a case study. Microelectron Reliab. 2018;91(1):160–9. https://doi.org/10.1016/j.microrel.2018.08.007.

  21. 21.

    Kitagawa G. Monte-Carlo filter and smoother for non-Gaussian nonlinear state space models. J Comput Graph Stat. 1996;1:1–25.

  22. 22.

    Koessler L, Benar C, Maillard L, Badier JM, Vignal JP, Bartolomei F, Chauvel P, Gavaret M. Source localization of ictal epileptic activity investigated by high resolution EEG and validated by SEEG. Neuroimage. 2010;51(2):642–53.

  23. 23.

    Kumar VS, Rao TVKH. Resampling schemes for Rao-Blackwellization Particle Filters. In: International conference on computing, analytics and security trends (CAST), Pune. 2016;377–382. https://doi.org/10.1109/cast.2016.7914998.

  24. 24.

    Li T, Bolic M, Djuric PM. Resampling methods for particle filtering: classification, implementation, and strategies. IEEE Signal Process Mag. 2015;32(3):70–86. https://doi.org/10.1109/msp.2014.2330626.

  25. 25.

    Makeig S, Westerfield M, Jung TP, et al. Dynamic brain sources of visual evoked responses. Science. 2002;295:690–4. https://doi.org/10.1126/science.1066168.

  26. 26.

    Miao L, Zhang JJ, Chakrabarti C, et al. Efficient Bayesian tracking of multiple sources of neural activity: algorithms and real-time FPGA implementation. IEEE Trans Signal Process. 2013;61(3):633–47. https://doi.org/10.1109/tsp.2012.2226172.

  27. 27.

    Mohseni HR, Wilding EL, Sanei S. Sequential Monte Carlo techniques for EEG dipole placing and tracking. In: Sensor array and multichannel signal processing workshop. 2008;95–98.

  28. 28.

    Mosher JC, Leahy RM. Source localization using recursively applied and projected (RAP) MUSIC. IEEE Trans Signal Process. 1999;47(2):332–40.

  29. 29.

    Mosher JC, Lewis PS, Leahy RM. Multiple dipole modelling and localization from spatio-temporal MEG data. IEEE Trans Biomed Eng. 1992;39(6):541–57. https://doi.org/10.1109/10.141192.

  30. 30.

    Mosher JC, Leahy R, Lewis P. EEG and MEG: forward solutions for inverse methods. IEEE Trans Biomed Eng. 1999;46(3):245–59. https://doi.org/10.1109/10.748978.

  31. 31.

    Oostenveld R, Fries P, Maris E, et al. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data, computational intelligence and neuroscience. 2011;Article ID 156869, 9 p. https://doi.org/10.1155/2011/156869. http://fieldtrip.fcdonders.nl.

  32. 32.

    Ouyang G, Wang Y, Yang Z, Li X. Global synchronization of multichannel EEG in patients with electrical status epilepticus in sleep. Clin EEG Neurosci. 2015;46(4):357–63.

  33. 33.

    Pascual-Marqui R. Review of Methods for Solving the EEG Inverse Problem. Int J Bioelectromagn. 1999;1(1):75–86.

  34. 34.

    Sarvas J. Basic mathematical and electromagnetic concepts of the bomagnetic inverse problem. Phys Med Biol. 1987;32:11–22. https://doi.org/10.1088/0031-9155/32/1/004.

  35. 35.

    Sorrentino A, Parkkonen L, Pascarella A, et al. Dynamical MEG source modeling with multi-target Bayesian filtering. Hum Brain Mapp. 2009;30(6):1911–21. https://doi.org/10.1002/hbm.20786.

  36. 36.

    Sorrentino A, Parkkonen L, Piana M. Particle filters: a new method for reconstructing multiple current dipoles from MEG data. Int Congr Ser. 2007;1300:173–6.

  37. 37.

    Stefan H, Schneider S, Abraham-Fuchs K, Bauer J, Feistel H, Pawlik G, Neubauer U, Rohrlein G, Huk WJ. Magnetic source localization in focal epilepsy: multichannel magnetoencephalography correlated with magnetic resonance brain imaging. Brain. 1990;113(5):1347–59.

  38. 38.

    Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM. Brainstorm: a userfriendly application for MEG/EEG analysis. Comput Intell Neurosci. 2011;Article ID 879716, 13 p.

  39. 39.

    Van Veen BD, Buckley K. Beamforming: a versatile approach to spatial filtering. IEEE ASSP Mag. 1988;5:4–24.

  40. 40.

    Vivaldi V, Sorrentino A. Bayesian smoothing of dipoles in Magneto-/Electro-encephalography. Inverse Prob. 2016;32(045007):1–16. https://doi.org/10.1088/0266-5611/32/4/045007.

  41. 41.

    Zhukov L, Weinstein D, Johnson C. Independent Component Analysis for EEG source localization. IEEE Eng Med Biol Mag. 2000;19(3):87–96.

Download references

Author information

Correspondence to Santhosh Kumar Veeramalla.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Veeramalla, S.K., Talari, V.K.H.R. Multiple dipole source localization of EEG measurements using particle filter with partial stratified resampling. Biomed. Eng. Lett. (2020). https://doi.org/10.1007/s13534-020-00149-6

Download citation

Keywords

  • EEG
  • Particle filter
  • Resampling
  • Localization
  • Inverse problems