Advertisement

Sensing and actuation technologies for smart socket prostheses

  • Sumit Gupta
  • Kenneth J. LohEmail author
  • Andrew Pedtke
Review Article
  • 64 Downloads

Abstract

The socket is the most critical part of every lower-limb prosthetic system, since it serves as the interfacial component that connects the residual limb with the artificial system. However, many amputees abandon their socket prostheses due to the high-level of discomfort caused by the poor interaction between the socket and residual limb. In general, socket prosthesis performance is determined by three main factors, namely, residual limb-socket interfacial stress, volume fluctuation of the residual limb, and temperature. This review paper summarizes the various sensing and actuation solutions that have been proposed for improving socket performance and for realizing next-generation socket prostheses. The working principles of different sensors and how they have been tested or used for monitoring the socket interface are discussed. Furthermore, various actuation methods that have been proposed for actively modifying and improving the socket interface are also reviewed. Through the continued development and integration of these sensing and actuation technologies, the long-term vision is to realize smart socket prostheses. Such smart socket systems will not only function as a socket prosthesis but will also be able to sense parameters that cause amputee discomfort and self-adjust to optimize its fit, function, and performance.

Keywords

Actuation Interfacial stress Lower-limb amputees Sensors Self-adjust Socket prosthesis Smart socket Temperature Volume fluctuation 

Notes

Compliance with ethical standards

Conflict of interest

Dr. Andrew Pedtke is the co-founder and chief executive officer of LIM Innovations. Prof. Kenneth Loh and Mr. Sumit Gupta declare no conflicts of interest.

Ethical approval

This work did not involve any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Owings MF, Kozak LJ. Ambulatory and inpatient procedures in the United States, 1996. Vital Health Stat. 1998;13(139):1–119.Google Scholar
  2. 2.
    Ziegler-Graham K, MacKenzie EJ, Ephraim PL, Travison TG, Brookmeyer R. Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch Phys Med Rehabilit. 2008;89(3):422–9.CrossRefGoogle Scholar
  3. 3.
    Stinner DJ, Burns TC, Kirk KL, Scoville CR, Ficke JR, Hsu JR. Prevalence of late amputations during the current conflicts in Afghanistan and Iraq. Mil Med. 2010;175(12):1027–9.CrossRefGoogle Scholar
  4. 4.
    Raichle KA, Hanley MA, Molton I, Kadel NJ, Campbell K, Phelps E, Ehde D, Smith DG. Prosthesis use in persons with lower and upper-limb amputation. J Rehabil Res Dev. 2008;45(7):961–72.CrossRefGoogle Scholar
  5. 5.
    Akarsu S, Tekin L, Safaz I, Göktepe AS, Yazicioğlu K. Quality of life and functionality after lower limb amputations: comparison between uni- vs. bilateral amputee patients. Prosthet Orthot Int. 2013;37(1):9–13.CrossRefGoogle Scholar
  6. 6.
    Reiber GE, McFarland LV, Hubbard S, Maynard C, Blough DK, Gambel JM, Smith DG. Servicemembers and veterans with major traumatic limb loss from Vietnam war and OIF/OEF conflicts: survey methods, participants, and summary findings. J Rehabil Res Dev. 2010;47(4):275–98.CrossRefGoogle Scholar
  7. 7.
    Roffman CE, Buchanan J, Allison GT. Predictors of non-use of prostheses by people with lower limb amputation after discharge from rehabilitation: development and validation of clinical prediction rules. J Physiother. 2014;60(4):224–31.CrossRefGoogle Scholar
  8. 8.
    Gailey R, McFarland LV, Cooper RA, Czerniecki J, Gambel JM, Hubbard S, Maynard C, Smith DG, Raya M, Reiber GE. Unilateral lower-limb loss: prosthetic device use and functional outcomes in servicemembers from Vietnam war and OIF/OEF conflicts. J Rehabil Res Dev. 2010;47(4):317–32.CrossRefGoogle Scholar
  9. 9.
    Paternò L, Ibrahimi M, Gruppioni E, Menciassi A, Ricotti L. Sockets for limb prostheses: a review of existing technologies and open challenges. IEEE Trans Biomed Eng. 2018;65(9):1996–2010.CrossRefGoogle Scholar
  10. 10.
    Durmus D, Safaz I, Adıgüzel E, Uran A, Sarısoy G, Goktepe AS, Tan AK. The relationship between prosthesis use, phantom pain and psychiatric symptoms in male traumatic limb amputees. Compr Psychiatry. 2015;1(59):45–53.CrossRefGoogle Scholar
  11. 11.
    Chamlian TR. Use of prostheses in lower limb amputee patients due to peripheral arterial disease. Einstein (São Paulo). 2014;12(4):440–6.CrossRefGoogle Scholar
  12. 12.
    Pasquina CP, Carvalho AJ, Sheehan TP. Ethics in rehabilitation: access to prosthetics and quality care following amputation. AMA J Ethics. 2015;17(6):535–46.CrossRefGoogle Scholar
  13. 13.
    Pinzur MS, Cox W, Kaiser J, Morris T, Patwardhan A, Vrbos L. The effect of prosthetic alignment on relative limb loading in persons with trans-tibial amputation: a preliminary report. J Rehabil Res Dev. 1995;32(4):373–7.Google Scholar
  14. 14.
    Schmalz T, Blumentritt S, Jarasch R. Energy expenditure and biomechanical characteristics of lower limb amputee gait: the influence of prosthetic alignment and different prosthetic components. Gait Posture. 2002;16(3):255–63.CrossRefGoogle Scholar
  15. 15.
    Al-Fakih E, Osman NA, Adikan FM. Techniques for interface stress measurements within prosthetic sockets of transtibial amputees: a review of the past 50 years of research. Sensors. 2016;16(7):1119.CrossRefGoogle Scholar
  16. 16.
    Gaine WJ, Smart C, Bransby-Zachary M. Upper limb traumatic amputees: review of prosthetic use. J Hand Surg. 1997;22(1):73–6.CrossRefGoogle Scholar
  17. 17.
    Petron A, Duval JF, Herr H. Multi-indenter device for in vivo biomechanical tissue measurement. IEEE Trans Neural Syst Rehabil Eng. 2016;25(5):4326–435.Google Scholar
  18. 18.
    Pirouzi G, Osman A, Azuan N, Oshkour A, Ali S, Gholizadeh H, Abas WW. Development of an air pneumatic suspension system for transtibial prostheses. Sensors. 2014;14(9):16754–65.CrossRefGoogle Scholar
  19. 19.
    Wang L, Loh KJ. Nanocomposite fabric sensors for socket prostheses and pressure ulcer prevention. In: Conf proc 7th world conference on structural control and monitoring. 2018.Google Scholar
  20. 20.
    Meulenbelt HE, Geertzen JH, Jonkman MF, Dijkstra PU. Determinants of skin problems of the stump in lower-limb amputees. Arch Phys Med Rehabil. 2009;90(1):74–81.CrossRefGoogle Scholar
  21. 21.
    Levy SW. Skin problems of the leg amputee. Prosthet Orthot Int. 1980;4(1):37–44.Google Scholar
  22. 22.
    Lyon CC, Kulkarni J, Zimersonc E, Ross EV, Beck MH. Skin disorders in amputees. J Am Acad Dermatol. 2000;42(3):501–7.CrossRefGoogle Scholar
  23. 23.
    Mak AF, Zhang M, Boone DA. State-of-the-art research in lower-limb prosthetic biomechanics-socket interface: a review. J Rehabil Res Dev. 2001;38(2):161–74.Google Scholar
  24. 24.
    Ali S, Osman NA, Eshraghi A, Gholizadeh H, Abas WA. Interface pressure in transtibial socket during ascent and descent on stairs and its effect on patient satisfaction. Clin Biomech. 2013;28(9–10):994–9.CrossRefGoogle Scholar
  25. 25.
    Lee WC, Zhang M, Mak AF. Regional differences in pain threshold and tolerance of the transtibial residual limb: including the effects of age and interface material. Arch Phys Med Rehabil. 2005;86(4):641–9.CrossRefGoogle Scholar
  26. 26.
    Colombo G, Facoetti G, Rizzi C. Automatic below-knee prosthesis socket design: a preliminary approach. In: Conf proc international conference on digital human modeling and applications in health, safety, ergonomics and risk management. 2016; pp. 75–81.CrossRefGoogle Scholar
  27. 27.
    Ogawa A, Obinata G, Hase K, Dutta A, Nakagawa M. Design of lower limb prosthesis with contact pressure adjustment by MR fluid. In: Conf proc 30th annual international conference of the ieee engineering in medicine and biology society. 2008.Google Scholar
  28. 28.
    Kahle JT, Highsmith MJ. Transfemoral sockets with vacuum-assisted suspension comparison of hip kinematics, socket position, contact pressure, and preference: ischial containment versus brimless. J Rehabil Res Dev. 2013;50(9):1241–52.CrossRefGoogle Scholar
  29. 29.
    Lu N, Lu C, Yang S, Rogers J. Highly sensitive skin-mountable strain gauges based entirely on elastomers. Adv Funct Mater. 2012;22(19):4044–50.CrossRefGoogle Scholar
  30. 30.
    Tiwana MI, Redmond SJ, Lovell NH. A review of tactile sensing technologies with applications in biomedical engineering. Sens Actuators A Phys. 2012;179:17–31.CrossRefGoogle Scholar
  31. 31.
    Appoldt F, Bennett L, Contini R. Stump-socket pressure in lower extremity prostheses. J Biomech. 1968;1(4):247–57.CrossRefGoogle Scholar
  32. 32.
    Appoldt FA, Bennett L, Contini R. Tangential pressure measurements in above-knee suction sockets. Bull Prosthet Res. 1970;10(13):70–86.Google Scholar
  33. 33.
    Burgess EM, Moore AJ. Physiological suspension: an interim report. Bull Prosthet Res. 1977;16(2):58–70.Google Scholar
  34. 34.
    Leavitt LA, Peterson CR, Canzoneri J, Pza R, Muilenburg AL, Rhyne VT. Quantitative method to measure the relationship between prosthetic gait and the forces produced at the stump-socket interface. Am J Phys Med Rehabil. 1970;49(3):192–203.Google Scholar
  35. 35.
    Leavitt LA, Zuniga EN, Calvert JC, Canzoneri J, Peterson CR. Gait analysis and tissue-socket interface pressures in above-knee amputees. South Med J. 1972;65(10):1197.CrossRefGoogle Scholar
  36. 36.
    Pearson JR, Holmgren G, March L, Oberg K. Pressures in critical regions of the below-knee patellar-tendon-bearing prosthesis. Bull Prosthet Res. 1973;10(19):52–76.Google Scholar
  37. 37.
    Rae JW, Cockrell JL. Interface pressure and stress distribution in prosthetic fitting. Bull Prosthet Res. 1971;10(15):64–111.Google Scholar
  38. 38.
    Sonck WA, Cockrell JL, Koepke GH. Effect of liner materials on interface pressures in below-knee prostheses. Arch Phys Med Rehabil. 1970;51(11):666–9.Google Scholar
  39. 39.
    Winarski DJ, Pearson JR. Least-squares matrix correlations between stump stresses and prosthesis loads for below-knee amputees. J Biomech Eng. 1987;109(3):238–46.CrossRefGoogle Scholar
  40. 40.
    Dickinson AS, Steer JW, Worsley PR. Finite element analysis of the amputated lower limb: a systematic review and recommendations. Med Eng Phys. 2017;43:1–8.CrossRefGoogle Scholar
  41. 41.
    Zhang M, Turner-Smith A, Tanner A, Roberts V. Clinical investigation of the pressure and shear stress on the trans-tibial stump with a prosthesis. Med Eng Phys. 1998;20:188–98.CrossRefGoogle Scholar
  42. 42.
    Sanders JE, Daly CH. Measurement of stresses in three orthogonal directions at the residual limb-prosthetic socket interface. IEEE Trans Rehabil Eng. 1993;1(2):79–85.CrossRefGoogle Scholar
  43. 43.
    Dou P, Jia X, Suo S, Wang R, Zhang M. Pressure distribution at the stump/socket interface in transtibial amputees during walking on stairs, slope and non-flat road. Clin Biomech. 2006;21(10):1067–73.CrossRefGoogle Scholar
  44. 44.
    Hafner BJ, Sanders JE. Considerations for development of sensing and monitoring tools to facilitate treatment and care of persons with lower limb loss. J Rehabil Res Dev. 2014;51(1):1–14.CrossRefGoogle Scholar
  45. 45.
    Osman NA, Spence WD, Solomonidis SE, Paul JP, Weir AM. The patellar tendon bar! Is it a necessary feature? Med Eng Phys. 2010;32(7):760–5.CrossRefGoogle Scholar
  46. 46.
    Sanders JE, Lain D, Dralle AJ, Okumura R. Interface pressures and shear stresses at thirteen socket sites on two persons with transtibial amputation. J Rehabil Res Dev. 1997;1(34):19–43.Google Scholar
  47. 47.
    Sanders JE, Zachariah SG, Jacobsen AK, Fergason JR. Changes in interface pressures and shear stresses over time on trans-tibial amputee subjects ambulating with prosthetic limbs: comparison of diurnal and six-month differences. J Biomech. 2005;38(8):1566–73.CrossRefGoogle Scholar
  48. 48.
    Parmar S, Khodasevych I, Troynikov O. Evaluation of flexible force sensors for pressure monitoring in treatment of chronic venous disorders. Sensors. 2017;17(8):1923.CrossRefGoogle Scholar
  49. 49.
    Kane BJ, Cutkosky MR, Kovacs GT. A traction stress sensor array for use in high-resolution robotic tactile imaging. J Microelectromech Syst. 2000;9(4):425–34.CrossRefGoogle Scholar
  50. 50.
    Schofield JS, Evans KR, Hebert JS, Marasco PD, Carey JP. The effect of biomechanical variables on force sensitive resistor error: implications for calibration and improved accuracy. J Biomech. 2016;49(5):786–92.CrossRefGoogle Scholar
  51. 51.
    Fraden J. Handbook of modern sensors. Physics, design and applications. San Diego: Springer; 2004.Google Scholar
  52. 52.
    Barlian AA, Park WT, Mallon JR, Rastegar AJ, Pruitt BL. Semiconductor piezoresistance for microsystems. Proc IEEE. 2009;97(3):513–52.CrossRefGoogle Scholar
  53. 53.
    Saccomandi P, Schena E, Oddo CM, Zollo L, Silvestri S, Guglielmelli E. Microfabricated tactile sensors for biomedical applications: a review. Biosensors. 2014;4(4):422–48.CrossRefGoogle Scholar
  54. 54.
    Dabling JG, Filatov A, Wheeler JW. Static and cyclic performance evaluation of sensors for human interface pressure measurement. In: Conf proc annual international conference of the IEEE engineering in medicine and biology society. 2012; pp. 162–165.Google Scholar
  55. 55.
    Hollinger A, Wanderley MM. Evaluation of commercial force-sensing resistors. In: Conf proc international conference on new interfaces for musical expression. 2006.Google Scholar
  56. 56.
    Interlink Electronics Inc. FSR 400 series data sheet. https://www.interlinkelectronics.com/datasheets/Datasheet_FSR.pdf. Accessed 17 Jul 2019.
  57. 57.
    IEE International Electronics & Engineering. Specification sheet for standard LuSense sensors of the PS3 family. Revision 0, March 29, 2001.Google Scholar
  58. 58.
  59. 59.
    Vecchi F, Freschi C, Micera S, Sabatini A, Dario P, Sacchetti R. Experimental evaluation of two commercial force sensors for applications in biomechanics and motor control. In: Conf proc 5th annual conference of the international functional electrical stimulation society. 2000.Google Scholar
  60. 60.
    Ruda EM, Sanchez OFA, Mejia JCH, Gomez SJ, Flautero OIC. Design process of mechatronic device for measuring the stump stresses on a lower limb amputee. In: Conf proc 22nd international congress of mechanical engineering (COBEM 2013). 2013; pp. 4620–4628.Google Scholar
  61. 61.
    Polliack A, Landsberger S, McNeal D, Sieh R, Craig D, Ayyappa E. Socket measurement systems perform under pressure. Biomechanics. 1999;6:71–80.Google Scholar
  62. 62.
    Polliack AA, Sieh RC, Craig DD, Landsberger S, McNeil DR, Ayyappa E. Scientific validation of two commercial pressure sensor systems for prosthetic socket fit. Prosthet Orthot Int. 2000;24(1):63–73.CrossRefGoogle Scholar
  63. 63.
    Almassri AM, Hasan W, Ahmad S, Ishak A, Ghazali A, Talib D, Wada C. Pressure sensor: state of the art, design, and application for robotic hand. J Sens. 2015.  https://doi.org/10.1155/2015/846487.CrossRefGoogle Scholar
  64. 64.
    Luo ZP, Berglund LJ, An KN. Validation of f-scan pressure sensor system: a technical note. J Rehabil Res Dev. 1998;35(2):186–91.Google Scholar
  65. 65.
    Lai CH, Li-Tsang CW. Validation of the Pliance x system in measuring interface pressure generated by pressure garment. Burns. 2009;35(6):845–51.CrossRefGoogle Scholar
  66. 66.
    Safari MR, Tafti N, Aminian G. Socket interface pressure and amputee reported outcomes for comfortable and uncomfortable conditions of patellar tendon bearing socket: a pilot study. Assist Technol. 2015;27(1):24–31.CrossRefGoogle Scholar
  67. 67.
    Tiwana MI, Shashank A, Redmond SJ, Lovell NH. Characterization of a capacitive tactile shear sensor for application in robotic and upper limb prostheses. Sens Actuators A Phys. 2011;165(2):164–72.CrossRefGoogle Scholar
  68. 68.
    Wolf SI, Alimusaj M, Fradet L, Siegel J, Braatz F. Pressure characteristics at the stump/socket interface in transtibial amputees using an adaptive prosthetic foot. Clin Biomech. 2009;24(10):860–5.CrossRefGoogle Scholar
  69. 69.
    Meier RH, Meeks ED, Herman RM. Stump-socket fit of below-knee prostheses: comparison of three methods of measurement. Arch Phys Med Rehabil. 1973;54(12):553–8.Google Scholar
  70. 70.
    Polliack A, Craig D, Sieh R, Landsberger S, McNeal D. Laboratory and clinical tests of a prototype pressure sensor for clinical assessment of prosthetic socket fit. Prosthet Orthot Int. 2002;26(1):23–34.CrossRefGoogle Scholar
  71. 71.
    Sengeh DM, Herr H. A variable-impedance prosthetic socket for a transtibial amputee designed from magnetic resonance imaging data. J Prosthet Orthot. 2013;25(3):129–37.CrossRefGoogle Scholar
  72. 72.
    Ghoseiri K, Safari MR. Prevalence of heat and perspiration discomfort inside prostheses: literature review. J Rehabil Res Dev. 2014;51(6):855–68.CrossRefGoogle Scholar
  73. 73.
    Williams RB, Porter D, Roberts VC, Regan JF. Triaxial force transducer for investigating stresses at the stump/socket interface. Med Biol Eng Comput. 1992;30(1):89–96.CrossRefGoogle Scholar
  74. 74.
    Razian MA, Pepper MG. Design, development, and characteristics of an in-shoe triaxial pressure measurement transducer utilizing a single element of piezoelectric copolymer film. IEEE Trans Neural Syst Rehabil Eng. 2003;11(3):288–93.CrossRefGoogle Scholar
  75. 75.
    Rocha RP, Gomes JM, Carmo JP, Silva AF, Correia JH. Low-cost/high-reproducibility flexible sensor based on photonics for strain measuring. Opt Laser Technol. 2014;56:278–84.CrossRefGoogle Scholar
  76. 76.
    Fresvig T, Ludvigsen P, Steen H, Reikerås O. Fibre optic bragg grating sensors: an alternative method to strain gauges for measuring deformation in bone. Med Eng Phys. 2008;30(1):104–8.CrossRefGoogle Scholar
  77. 77.
    Yu Q, Zhou X. Pressure sensor based on the fiber-optic extrinsic fabry-perot interferometer. Photon Sens. 2011;1(1):72–83.MathSciNetCrossRefGoogle Scholar
  78. 78.
    Liu X, Iordachita II, He X, Taylor RH, Kang JU. Miniature fiber-optic force sensor based on low-coherence fabry-pérot interferometry for vitreoretinal microsurgery. Biomed Opt Express. 2012;3(5):1062–76.CrossRefGoogle Scholar
  79. 79.
    Bartelt H, Elsmann T, Habisreuther T, Schuster K, Rothhardt M. Optical bragg grating sensor fibers for ultra-high temperature applications. In: Conf proc 5th Asia pacific optical sensors conference. 2015.Google Scholar
  80. 80.
    Gao R, Jiang Y, Ding W, Wang Z, Liu D. Filmed extrinsic fabry–perot interferometric sensors for the measurement of arbitrary refractive index of liquid. Sens Actuators B Chem. 2013;177:924–8.CrossRefGoogle Scholar
  81. 81.
    Sante RD. Fibre optic sensors for structural health monitoring of aircraft composite structures: recent advances and applications. Sensors. 2015;15(8):18666–713.CrossRefGoogle Scholar
  82. 82.
    Mihailov SJ. Fiber Bragg grating sensors for harsh environments. Sensors. 2012;12(2):1898–918.CrossRefGoogle Scholar
  83. 83.
    Kanellos GT, Papaioannou G, Tsiokos D, Mitrogiannis C, Nianios G, Pleros N. Two dimensional polymer-embedded quasi-distributed FBG pressure sensor for biomedical applications. Opt Express. 2010;18(1):179–86.CrossRefGoogle Scholar
  84. 84.
    Kanellos GT, Tsiokos D, Pleros N, Papaioannou G, Childs P, Pissadakis S. Enhanced durability FBG-based sensor pads for biomedical applications as human–machine interface surfaces. In: Conf proc international workshop on biophotonics. 2011.Google Scholar
  85. 85.
    Al-Fakih EA, Osman NA, Adikan FR, Eshraghi A, Jahanshahi P. Development and validation of fiber Bragg grating sensing pad for interface pressure measurements within prosthetic sockets. IEEE Sens J. 2015;16(4):965–74.CrossRefGoogle Scholar
  86. 86.
    Al-Fakih E, Osman N, Eshraghi A, Adikan F. The capability of fiber Bragg grating sensors to measure amputees’ trans-tibial stump/socket interface pressures. Sensors. 2013;13(8):10348–57.CrossRefGoogle Scholar
  87. 87.
    Zhang ZF, Tao XM, Zhang HP, Zhu B. Soft fiber optic sensors for precision measurement of shear stress and pressure. IEEE Sens J. 2013;13(5):1478–82.CrossRefGoogle Scholar
  88. 88.
    Donati M, Vitiello N, Rossi SD, Lenzi T, Crea S, Persichetti A, Giovacchini F, Koopman B, Podobnik J, Munih M, Carrozza M. A flexible sensor technology for the distributed measurement of interaction pressure. Sensors. 2013;13(1):1021–45.CrossRefGoogle Scholar
  89. 89.
    Rossi SD, Lenzi T, Vitiello N, Donati M, Persichetti A, Giovacchini F, Vecchi F, Carrozza MC. Development of an in-shoe pressure-sensitive device for gait analysis. In: Conf proc international conference of the IEEE engineering in medicine and biology society, EMBC. 2011; pp. 5637–5640.Google Scholar
  90. 90.
    Missinne J, Bosman E, Hoe BV, Verplancke R, Steenberge GV, Kalathimekkad S, Daele PV, Vanfleteren J. Two axis optoelectronic tactile shear stress sensor. Sens Actuators A Phys. 2012;186:63–8.CrossRefGoogle Scholar
  91. 91.
    Lincoln LS, Quigley M, Rohrer B, Salisbury C, Wheeler J. An optical 3d force sensor for biomedical devices. In: Conf Proc 4th IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob). 2012; pp. 1500–1505.Google Scholar
  92. 92.
    Cutkosky MR, Howe RD, Provancher WR. Force and tactile sensors. Berlin: Springer; 2008.CrossRefGoogle Scholar
  93. 93.
    Yousef H, Boukallel M, Althoefer K. Tactile sensing for dexterous in-hand manipulation in robotics—a review. Sens Actuators A Phys. 2011;167(2):171–87.CrossRefGoogle Scholar
  94. 94.
    Baars EC, Geertzen JH. Literature review of the possible advantages of silicon liner socket use in trans-tibial prostheses. Prosthet Orthot Int. 2005;29(1):27–37.CrossRefGoogle Scholar
  95. 95.
    Peery TJ, Ledoux WR, Klute GK. Residual-limb skin temperature in transtibial sockets. J Rehabil Res Dev. 2005;42(2):147–54.CrossRefGoogle Scholar
  96. 96.
    Klute GK, Rowe GI, Mamishev AV, Ledoux WR. The thermal conductivity of prosthetic sockets and liners. Prosthet Orthot Int. 2007;31(3):292–9.CrossRefGoogle Scholar
  97. 97.
    Peery JT, Ledoux WR, Klute GK. Residual-limb skin temperature in transtibial sockets. J Rehabil Res Dev. 2005;42(2):147–54.CrossRefGoogle Scholar
  98. 98.
    Huff EA, Ledoux WR, Berge JS, Klute GK. Measuring residual limb skin temperatures at the skin-prosthesis interface. JPO J Prosthet Orthot. 2008;20(4):170–3.CrossRefGoogle Scholar
  99. 99.
    Caldwell R, Fatone S. Technique for perforating a prosthetic liner to expel sweat. J Prosthet Orthot. 2017;29(3):145–7.CrossRefGoogle Scholar
  100. 100.
    Bertels T, Kettwig T, IPot. Breathable liner for transradial prostheses. In: Conf proc myoelectric symposium. 2011.Google Scholar
  101. 101.
    Wernke MM, Schroeder RM, Kelley CT, Denune JA, Colvin JM. Smarttemp prosthetic liner significantly reduces residual limb temperature and perspiration. JPO J Prosthet Orthot. 2015;27(4):134–9.CrossRefGoogle Scholar
  102. 102.
    Han Y, Liu F, Zhao L, Zhe J. An automatic and portable prosthetic cooling device with high cooling capacity based on phase change. Appl Therm Eng. 2016;104:243–8.CrossRefGoogle Scholar
  103. 103.
    Ghoseiri K, Zheng YP, Leung AK, Rahgozar M, Aminian G, Lee TH, Safari MR. Temperature measurement and control system for transtibial prostheses: functional evaluation. Assist Technol. 2018;30(1):16–23.CrossRefGoogle Scholar
  104. 104.
    Han Y, Liu F, Dowd G, Zhe J. A thermal management device for a lower-limb prosthesis. Appl Therm Eng. 2015;82:246–52.CrossRefGoogle Scholar
  105. 105.
    Webber CM, Davis BL. Design of a novel prosthetic socket: assessment of the thermal performance. J Biomech. 2015;48(7):1294–9.CrossRefGoogle Scholar
  106. 106.
    Zhe J, Han Y. Low-power method and device for cooling prosthetic limb socket based on phase change. University of Akron. United States Patent 9,814,607. 2017.Google Scholar
  107. 107.
    King C. Vacuum assisted heat/perspiration removal system and limb volume management for prosthetic device. United States Patent 11/518,064. 2007.Google Scholar
  108. 108.
    King C. Airflow regulation system for artificial limb and associated methods. United States Patent 8,475,537. 2013.Google Scholar
  109. 109.
    Board WJ, Street GM, Caspers C. A comparison of trans-tibial amputee suction and vacuum socket conditions. Prosthet Orthot Int. 2001;25(3):202–9.CrossRefGoogle Scholar
  110. 110.
    Lilja M, Johansson S, Öberg T. Relaxed versus activated stump muscles during casting for trans-tibial prostheses. Prosthet Orthot Int. 1999;23(1):13–20.Google Scholar
  111. 111.
    Fernie GR, Holliday PJ, Lobb RJ. An instrument for monitoring stump oedema and shrinkage in amputees. Prosthet Orthot Int. 1978;2(2):69–72.CrossRefGoogle Scholar
  112. 112.
    Commean PK, Smith EK, Cheverud JM, Vannier MW. Precision of surface measurements for below-knee residua. Arch Phys Med Rehabil. 1996;77(5):477–86.CrossRefGoogle Scholar
  113. 113.
    Schreiner RE, Sanders JE. A silhouetting shape sensor for the residual limb of a below-knee amputee. IEEE Trans Rehabil Eng. 1995;3(3):242–53.CrossRefGoogle Scholar
  114. 114.
    Krouskop TA, Dougherty D, Yalcinkaya MI, Muilenberg A. Measuring the shape and volume of an above-knee stump. Prosthet Orthot Int. 1988;12(3):136–42.Google Scholar
  115. 115.
    Murka CPP. 3-d imaging of residual limbs using ultrasound. Development. 1997;34(3):269–78.Google Scholar
  116. 116.
    Smith KE, Commean PK, Vannier MW. Residual-limb shape change: three-dimensional ct scan measurement and depiction in vivo. Radiology. 1996;200(3):843–50.CrossRefGoogle Scholar
  117. 117.
    Johansson S, Oberg T. Accuracy and precision of volumetric determinations using two commercial cad systems for prosthetics: a technical note. J Rehabil Res Dev. 1998;35(1):27.Google Scholar
  118. 118.
    Buis AW, Condon B, Brennan D, McHugh B, Hadley D. Magnetic resonance imaging technology in transtibial socket research: a pilot study. J Rehabil Res Dev. 2006;43(7):883–90.CrossRefGoogle Scholar
  119. 119.
    Sanders JE, Rogers EL, Abrahamson DC. Assessment of residual-limb volume change using bioimpedence. J Rehabil Res Dev. 2007;44(4):525–36.CrossRefGoogle Scholar
  120. 120.
    Sanders JE, Cassisi DV. Mechanical performance of inflatable inserts used in limb prosthetics. J Rehabil Res Dev. 2001;38(4):365–74.Google Scholar
  121. 121.
    Greenwald RM, Dean RC, Board WJ. Volume management: smart variable geometry socket (SVGS) technology for lower-limb prostheses. J Prosthet Orthot. 2003;15(3):107–12.CrossRefGoogle Scholar
  122. 122.
    Carrigan W, Nothnagle C, Savant P, Gao F, Wijesundara MB. Pneumatic actuator inserts for interface pressure mapping and fit improvement in lower extremity prosthetics. In: Conf proc 6th IEEE international conference on biomedical robotics and biomechatronics (BioRob). 2016; pp. 574–579.Google Scholar
  123. 123.
    Volder MD, and Reynaerts D. Pneumatic and hydraulic microactuators: A Review Journal of Micromechanics and Microengineering. 2010; 20(4): 043001.CrossRefGoogle Scholar
  124. 124.
    Mercier M, Shirley C, Stafford S, Hitzke S, Byju A, Kevorkian C, Madigan M, Philen M. Fluidic flexible matrix composites for volume management in prosthetic sockets. In: Conf proc ASME 2014 conference on smart materials, adaptive structures and intelligent systems. 2014; pp. 1–7.Google Scholar
  125. 125.
    Phillips SL, Resnik L, Latlief GA. Use of a dynamic load strap in adjustable anatomical suspension for transradial amputations. In: Conf proc myoelectric symposium. 2011.Google Scholar
  126. 126.
    Nakamura A, Abe N. Banner advertisement selecting method. NEC Corp. United States Patent 6,591,248. 2003.Google Scholar
  127. 127.
    Wilson AB, Schuch CM, Nitschke RO. A variable volume socket for below knee prostheses. Clin Prosthet Orthot. 1987;11(1):10–1.Google Scholar
  128. 128.
    Johnson A, Lee J, Veatch B. Designing for affordability, application, and performance: the international transradial adjustable limb prosthesis. PO J Prosthet Orthot. 2012;24(2):80–5.CrossRefGoogle Scholar
  129. 129.
    Kahle JT, Klenow TD, Highsmith MJ. Comparative effectiveness of an adjustable transfemoral prosthetic interface accommodating volume fluctuation: case study. Technol Innov. 2016;18(2–3):175–83.CrossRefGoogle Scholar
  130. 130.
    DeLisa JA. Gait analysis in the science of rehabilitation. Collingdale: Diane Publishing; 1998.Google Scholar
  131. 131.
    Koktas NS, Yalabik N, Yavuzer G. Combining neural networks for gait classification. In: Conf proc iberoamerican congress on pattern recognition. 2006; pp. 381–388.Google Scholar
  132. 132.
    Morris SJ, Paradiso JA. Shoe-integrated sensor system for wireless gait analysis and real-time feedback. In: Conf proc second joint 24th annual conference and the annual fall meeting of the biomedical engineering society. 2002; pp. 2468–2469.Google Scholar
  133. 133.
    Smith BT, Coiro DJ, Finson R, Betz RR, McCarthy J. Evaluation of force-sensing resistors for gait event detection to trigger electrical stimulation to improve walking in the child with cerebral palsy. IEEE Trans Neural Syst Rehabil Eng. 2002;10(1):22–9.CrossRefGoogle Scholar
  134. 134.
    Holmberg WS. An autonomous control system for a prosthetic foot ankle. IFAC Proc Vol. 2006;39(16):856–61.CrossRefGoogle Scholar
  135. 135.
    Williamson R, Andrews BJ. Gait event detection for fes using accelerometers and supervised machine learning. IEEE Trans Rehabil Eng. 2009;8(3):312–9.CrossRefGoogle Scholar
  136. 136.
    Chan HK, Zheng H, Wang H, Gawley R, Yang M, Sterritt R. Feasibility study on iphone accelerometer for gait detection. In: Conf proc 5th international conference on pervasive computing technologies for healthcare (PervasiveHealth) and workshops. 2011; pp. 184–187.Google Scholar
  137. 137.
    Aminian K, Najafi B, Büla C, Leyvraz PF, Robert P. Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes. J Biomech. 2002;35(5):689–99.CrossRefGoogle Scholar
  138. 138.
    Tong K, Granat MH. A practical gait analysis system using gyroscopes. Med Eng Phys. 1999;21(2):87–94.CrossRefGoogle Scholar
  139. 139.
    Pappas IP, Popovic MR, Keller T, Dietz V, Morari M. A reliable gait phase detection system. IEEE Trans Neural Syst Rehabil Eng. 2001;9(2):113–25.CrossRefGoogle Scholar
  140. 140.
    Erikson U, Lemperg R. Roentgenological study of movements of the amputation stump within the prosthesis socket in below-knee amputees fitted with a ptb prosthesis. Acta Orthop Scand. 1969;40(4):520–6.CrossRefGoogle Scholar
  141. 141.
    Grevsten S, Erikson U. A roentgenological study of the stump—socket contact and skeletal displacement in the ptb-suction prosthesis. Upsala J Med Sci. 1975;80(1):49–57.CrossRefGoogle Scholar
  142. 142.
    Lilja M, Johansson T, Öberg T. Movement of the tibial end in a ptb prosthesis socket: a sagittal x-ray study of the PTB prosthesis. Prosthet Orthot Int. 1993;17(1):21–6.CrossRefGoogle Scholar
  143. 143.
    Long IA. Normal shape-normal alignment (NSNA) above-knee prosthesis. Clin Prosthet Orthot. 1985;9(4):9–14.Google Scholar
  144. 144.
    Mayfield GW, Scanlon JA, Long I. A new look to and through the above-knee socket. Orthop Trans. 1977;1(1):95.Google Scholar
  145. 145.
    Sabolich J. Contoured adducted trachanteric-controlled alignment method (CAT-CAM): introduction and basic principles. Clin Prosth Orthos. 1985;9:15–26.Google Scholar
  146. 146.
    Murray KD, Convery P. The calibration of ultrasound transducers used to monitor motion of the residual femur within a trans-femoral socket during gait. Prosthet Orthot Int. 2000;24(1):55–62.CrossRefGoogle Scholar
  147. 147.
    Ward S, Wiedemann L, Stinear C, Stinear J, McDaid A. The influence of the re-link trainer on gait symmetry in healthy adults. In: Conf proc international conference on rehabilitation robotics (ICORR). 2017; pp. 276–282.Google Scholar
  148. 148.
    McDaid A, Tsoi YH, Xie S. MIMO actuator force control of a parallel robot for ankle rehabilitation. Interdiscip Mech. London: John Wiley & Sons, Inc; 2013; pp. 163–208.Google Scholar
  149. 149.
    Kora K, Stinear J, McDaid A. Design, analysis, and optimization of an acute stroke gait rehabilitation device. J Med Devices. 2017;11(1):014503.CrossRefGoogle Scholar
  150. 150.
    Cutti A, Perego P, Fusca M, Sacchetti R, Andreoni G. Assessment of lower limb prosthesis through wearable sensors and thermography. Sensors. 2014;14(3):5041–55.CrossRefGoogle Scholar
  151. 151.
    Levy SW. Skin problems of the leg amputee. Prosthet Orthot Int. 1980;4(1):37–44.Google Scholar
  152. 152.
    Rajbhandari SM, Sutton M, Davies C, Tesfaye S, Ward JD. ‘Sausage toe’: a reliable sign of underlying osteomyelitis. Diabet Med. 2000;17:174–7.CrossRefGoogle Scholar
  153. 153.
    Grayson ML, Gibbons WG, Balogh K, Levin E, Karchmer AW. Probing to bone in infected pedal ulcers: a clinical sign of underlying osteomyelitis in diabetic patients. JAMA. 1995;273(9):721–3.CrossRefGoogle Scholar
  154. 154.
    Croll SD, Nicholas G, Osborne MA, Wasser TE, Jones S. Role of magnetic resonance imaging in the diagnosis of osteomyelitis in diabetic foot infections. J Vasc Surg. 1996;24(2):266–70.CrossRefGoogle Scholar
  155. 155.
    Kaleta JL, Fleischli JW, Reilly CH. The diagnosis of osteomyelitis in diabetes using erythrocyte sedimentation rate: a pilot study. J Am Podiatr Med Assoc. 2001;91(9):445–50.CrossRefGoogle Scholar
  156. 156.
    Crerand S, Dolan M, Laing P, Bird M, Smith LM, Klenerman L. Diagnosis of osteomyelitis in neuropathic foot ulcers. J Bone Joint Surg. 1996;78(1):51–5.CrossRefGoogle Scholar
  157. 157.
    Yuh WT, Corson JD, Baraniewski HM, Rezai K, Shamma AR, Kathol MH, Sato Y, El-Khoury GY, Hawes DR, Platz CE. Osteomyelitis of the foot in diabetic patients: evaluation with plain film, 99mtc-mdp bone scintigraphy, and mr imaging. Am J Roentgenol. 1989;152(4):795–800.CrossRefGoogle Scholar
  158. 158.
    Henrot P, Stines J, Walter F, Martinet N, Paysant J, Blum A. Imaging of the painful lower limb stump. Radiographics. 2000;20(suppl_1):S219–35.CrossRefGoogle Scholar
  159. 159.
    Baumgartner R, Langlotz M. Amputee stump radiology. Prosthet Orthot Int. 1980;4(2):97–100.Google Scholar
  160. 160.
    Boutin RD, Pathria MN, Resnick D. Disorders in the stumps of amputee patients: MR imaging. Am J Roentgenol. 1998;17(2):497–501.CrossRefGoogle Scholar
  161. 161.
    Croll SD, Nicholas GG, Osborne MA, Wasser TE, Jones S. Role of magnetic resonance imaging in the diagnosis of osteomyelitis in diabetic foot infections. J Vasc Surg. 1996;24(2):266–70.CrossRefGoogle Scholar
  162. 162.
    Marcus CD, Ladam-Marcus VJ, Leone J, Malgrange D, Bonnet-Gausserand FM, Menanteau BP. Mr imaging of osteomyelitis and neuropathic osteoarthropathy in the feet of diabetics. Radiographics. 1996;16(6):1337–48.CrossRefGoogle Scholar
  163. 163.
    Dutronc H, Gobet A, Dauchy FA, Klotz R, Cazanave C, Garcia G, Lafarie-Castet S, Fabre T, Dupon M. Stump infections after major lower-limb amputation: a 10-year retrospective study. Médecine et Maladies Infectieuses. 2013;43(11–12):456–60.CrossRefGoogle Scholar
  164. 164.
    Zuluaga AF, Galvis W, Jaimes F, Vesga O. Lack of microbiological concordance between bone and non-bone specimens in chronic osteomyelitis: an observational study. BMC Infect Dis. 2002;2(1):8.CrossRefGoogle Scholar
  165. 165.
    Khatri G, Wagner DK, Sohnle PG. Effect of bone biopsy in guiding antimicrobial therapy for osteomyelitis complicating open wounds. Am J Med Sci. 2001;321(6):361–71.CrossRefGoogle Scholar
  166. 166.
    Marples RR, Downing DT, Kligman AM. Control of free fatty acids in human surface lipids by corynebacterium acnes. J Investig Dermatol. 1971;56(2):127–31.CrossRefGoogle Scholar
  167. 167.
    Gupta S, Loh KJ. Noncontact electrical permittivity mapping and pH-sensitive films for osseointegrated prosthesis and infection monitoring. IEEE Trans Med Imaging. 2017;36(11):2193–203.CrossRefGoogle Scholar
  168. 168.
    Wang L, Gupta S, Loh KJ, Koo HS. Distributed pressure sensing using carbon nanotube fabrics. IEEE Sens J. 2016;16(12):4663–4.CrossRefGoogle Scholar
  169. 169.
    Carlson JD, Matthis W, Toscano JR. Smart prosthetics based on magnetorheological fluids. In: Conf proc industrial and commercial applications of smart structures technologies. 2001; 308–316.Google Scholar
  170. 170.
    Glaessgen E, and Stargel D. The digital twin paradigm for future nasa and us air force vehicles. In: Conf proc 53rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference 20th AIAA/ASME/AHS adaptive structures conference. 2012; 1818.Google Scholar
  171. 171.
    Golbranson LF, Wirta RW, Kuncir EJ, Lieber RL, Oishi C. Volume changes occurring in postoperative below-knee residual limbs. J Rehabil Res Dev. 1988;25(2):11–8.Google Scholar

Copyright information

© Korean Society of Medical and Biological Engineering 2019

Authors and Affiliations

  1. 1.Department of Structural EngineeringUniversity of California-San DiegoLa JollaUSA
  2. 2.LIM InnovationsSan FranciscoUSA

Personalised recommendations