Advertisement

Biomedical Engineering Letters

, Volume 9, Issue 3, pp 327–337 | Cite as

Advances in the simulation of light–tissue interactions in biomedical engineering

  • Ilya Krasnikov
  • Alexey SeteikinEmail author
  • Bernhard Roth
Review Article

Abstract

Monte Carlo (MC) simulation for light propagation in scattering and absorbing media is the gold standard for studying the interaction of light with biological tissue and has been used for years in a wide variety of cases. The interaction of photons with the medium is simulated based on its optical properties and the original approximation of the scattering phase function. Over the past decade, with the new measurement geometries and recording techniques invented also the corresponding sophisticated methods for the description of the underlying light–tissue interaction taking into account realistic parameters and settings were developed. Applications, such as multiple scattering, optogenetics, optical coherence tomography, Raman spectroscopy, polarimetry and Mueller matrix measurement have emerged and are still constantly improved. Here, we review the advances and recent applications of MC simulation for the active field of the life sciences and the medicine pointing out the new insights enabled by the theoretical concepts.

Keywords

Monte Carlo simulation Biotissue Light-matter interaction Scattering and absorbing media 

Notes

Funding

The State task of the Ministry of Education and Science of the Russian Federation (Project # 3.5022.3017/8.9). B.R. acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122).

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

This article does not contain studies with human participants or animals.

References

  1. 1.
    Wang LV, Wu H-I. Biomedical optics: principles and imaging. Hoboken, NJ: Wiley; 2009.Google Scholar
  2. 2.
    Yun SH, Kwok SJ. Light in diagnosis, therapy and surgery. Nat Biomed Eng. 2017;1:0008.Google Scholar
  3. 3.
    Liu K, et al. Evaluation of the simplified spherical harmonics approximation in bioluminescence tomography through heterogeneous mouse models. Opt Express. 2010;18:20988–1002.Google Scholar
  4. 4.
    Chumakov, et al. Influence of refractive index matching on the photon diffuse reflectance. Phys Med Biol. 2002;47(23):4271–85.Google Scholar
  5. 5.
    Meglinsky IV, Matcher SJ. Modelling the sampling volume for skin blood oxygenation measurements. Med Biol Eng Comput. 2001;39:44–50.Google Scholar
  6. 6.
    Meglinsky IV, Matcher SJ. Analysis of the spatial distribution of the detector sensitivity in a multilayer randomly inhomogeneous medium with strong light scattering and absorption by the Monte Carlo method. Opt Spectrosc. 2001;91:654–9.Google Scholar
  7. 7.
    Lin Y, Northrop WF, Li X. Markov chain solution of photon multiple scattering through turbid slabs. Opt Express. 2016;24(23):26942–7.Google Scholar
  8. 8.
    Xu F, Davis AB, Sanghavi SV, Martonchik JV, Diner DJ. Linearization of Markov chain formalism for vector radiative transfer in a plane-parallel atmosphere/surface system. Appl Opt. 2012;51(16):3491–507.Google Scholar
  9. 9.
    Wang L, Jacques SL. Animated simulation of light transport in tissues. Proc SPIE. 1994;2134:2134A.Google Scholar
  10. 10.
    Periyasamy V, Pramanik M. Advances in Monte Carlo simulation for light propagation in tissue. IEEE Rev Biomed Eng. 2017;10:122–35.Google Scholar
  11. 11.
    Gandjbakhche AH, Weiss GH, Bonner RF, Nossal R. Photon path-length distributions for transmission through optically turbid slabs. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Top. 1993;48(2):810–8.Google Scholar
  12. 12.
    Li X, Ma L. Scaling law for photon transmission through optically turbid slabs based on random walk theory. Appl Sci. 2012;2(4):160–5.Google Scholar
  13. 13.
    Sun X, Li X, Ma L. A closed-form method for calculating the angular distribution of multiply scattered photons through isotropic turbid slabs. Opt Express. 2011;19(24):23932–7.Google Scholar
  14. 14.
    Welch AJ, Van Gemert MJ. Optical-thermal response of laser-irradiated tissue, vol. 2. Berlin: Springer; 2011.Google Scholar
  15. 15.
    Ma L, Li X, Sanders ST, Caswell AW, Roy S, Plemmons DH, Gord JR. 50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography. Opt Express. 2013;21(1):1152–62.Google Scholar
  16. 16.
    Wax A, Yang C, Backman V, Kalashnikov M, Dasari RR, Feld MS. Determination of particle size by using the angular distribution of backscattered light as measured with low-coherence interferometry. J Opt Soc Am A. 2002;19(4):737–44.Google Scholar
  17. 17.
    Yona G, Meitav N, Kahn I, Shoham S. Realistic numerical and analytical modeling of light scattering in brain tissue for optogenetic applications. eNeuro. 2016;3(1):1–9.Google Scholar
  18. 18.
    McLean JW, Freeman JD, Walker RE. Beam spread function with time dispersion. Appl Opt. 1998;37:4701–11.Google Scholar
  19. 19.
    Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci. 2009;2:183–202.MathSciNetzbMATHGoogle Scholar
  20. 20.
    Aravanis AM, Wang LP, Zhang F, Meltzer LA, Mogri MZ, Schneider MB, Deisseroth K. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J Neural Eng. 2007;4:S143–56.Google Scholar
  21. 21.
    Zhu C, Liu Q. Review of Monte Carlo modeling of light transport in tissues. J Biomed Opt. 2013;18:50902.Google Scholar
  22. 22.
    Azimipour M, Baumgartner R, Liu Y, Jacques SL, Eliceiri K, Pashaie R. Extraction of optical properties and prediction of light distribution in rat brain tissue. J Biomed Opt. 2014;19:075001.Google Scholar
  23. 23.
    Stujenske JM, Spellman T, Gordon JA. Modeling the spatiotemporal dynamics of light and heat propagation for in vivo optogenetics. Cell Rep. 2015;12:525–34.Google Scholar
  24. 24.
    Zhang A, Zhang Q, Chen C-L, Wang RK. Methods and algorithms for optical coherence tomography-based angiography: a review and comparison. J Biomed Opt. 2015;20:100901.Google Scholar
  25. 25.
    Drexler W, Liu M, Kumar A, Kamali T, Unterhuber A, Leitgeb RA. Optical coherence tomography today: speed, contrast, and multimodality. J Biomed Opt. 2014;19:71412.Google Scholar
  26. 26.
    Wieser W, Draxinger W, Klein T, Karpf S, Pfeiffer T, Huber R. High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s. Biomed Opt Express. 2014;5:2963.Google Scholar
  27. 27.
    Kim J, Brown W, Maher JR, Levinson H, Wax A. Functional optical coherence tomography: principles and progress. Phys Med Biol. 2015;60:211–48.Google Scholar
  28. 28.
    Thrane L. Optical coherence tomography: modeling and applications. Rosklide: Risø National Laboratory; 2001.Google Scholar
  29. 29.
    Smithies DJ, Lindmo T, Chen Z, Nelson JS, Milner TE. Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation. Phys Med Biol. 1998;43:3025.Google Scholar
  30. 30.
    Alerstam E, Yip Lo WC, Han TD, Rose J, Andersson-Engels S, Lilge L. Next-generation acceleration and code optimization for light transport in turbid media using GPUs. Biomed Opt Express. 2010;1:658.Google Scholar
  31. 31.
    Varkentin A, Otte M, Meinhardt-Wollweber M, Rahlves M, Mazurenka M, Morgner U, Roth B. Simple model to simulate OCT-depth signal in weakly and strongly scattering homogeneous media. J Opt. 2016;18(125302):1–10.Google Scholar
  32. 32.
    Churmakov Yu, Kuz’min V, Meglinski I. Application of the vector Monte-Carlo method in polarisation optical coherence tomography. Quantum Electron. 2006;36:1009–15.Google Scholar
  33. 33.
    Kuz’min VL, Meglinskii IV. Numerical simulation of coherent backscattering and temporal intensity correlations in random media. Quantum Electron. 2006;36(11):990–1002.Google Scholar
  34. 34.
    Shih W-C, Bechtel KL, Feld MS. Intrinsic Raman spectroscopy for quantitative biological spectroscopy. Part I: theory and simulations. Opt Express. 2008;16:12726–36.Google Scholar
  35. 35.
    Krasnikov I, Suhr C, Seteikin A, Roth B, Meinhardt-Wollweber M. Two efficient approaches for modeling of Raman scattering in homogeneous turbid media. J Opt Soc Am A. 2016;33(3):426–33.Google Scholar
  36. 36.
    Everall N, Hahn T, Matousek P, Parker AW, Towrie M. Photon migration in Raman spectroscopy. Appl Spectrosc. 2004;58:591–7.Google Scholar
  37. 37.
    Reble C, Gersonde I, Andree S, Eichler HJ, Helfmann J. Quantitative Raman spectroscopy in turbid media. J Biomed Opt. 2010;15:037016.Google Scholar
  38. 38.
    Krasnikov I, Seteikin A, Kniggendorf A-K, Roth B, Meinhardt-Wollweber M. Simulation of Raman scattering for realistic measurement scenarios including detector parameters and sampling volume. J Opt Soc Am A Opt Image Sci Vis. 2017;34(12):2138–44.Google Scholar
  39. 39.
    Meglinski I, Doronin AV. Monte Carlo modeling of photon migration for the needs of biomedical optics and biophotonics. In: Tuchin VV, Wang RK, editors. Advanced biophotonics: tissue optical sectioning. London: Taylor & Francis; 2012.Google Scholar
  40. 40.
    Tuchin V, editor. Handbook of optical biomedical diagnostics, vol. PM107. Washington: SPIE Press; 2002.Google Scholar
  41. 41.
    Lukic A, Dochow S, Bae H, Matz G, Latka I, Messerschmidt B, Schmitt M, Popp J. Endoscopic fiber probe for nonlinear spectroscopic imaging. Optica. 2017;4(5):496–501.Google Scholar
  42. 42.
    Varkentin A, Mazurenka M, Blumenröther E, Behrendt L, Emmert S, Morgner U, Meinhardt-Wollweber M, Rahlves M, Roth B. Trimodal system for in vivo skin cancer screening with combined optical coherence tomography-Raman and colocalized optoacoustic measurements. J Biophotonics. 2018;11(6):e201700288.Google Scholar
  43. 43.
    Mazurenka M, Behrendt L, Meinhardt-Wollweber M, Morgner U, Roth B. Development of a combined OCT-Raman probe for the prospective clinical melanoma skin cancer screening. Rev Sci Instrum. 2017;88(10):105103.Google Scholar
  44. 44.
    Krasnikov I, Suhr C, Seteikin A, Meinhardt-Wollweber M, Roth B. Monte Carlo simulation of the influence of internal optical absorption on the external Raman signal for biological samples. J Opt Soc Am A. 2019;36:877–82.Google Scholar
  45. 45.
    Wang S, Zhao J, Lui H, He Q, Bai J, Zeng H. Monte Carlo simulation of in vivo Raman spectral measurements of human skin with a multi-layered tissue optical model. J Biophotonics. 2014;7(9):703–12.Google Scholar
  46. 46.
    Zeng H, MacAulay C, Mclean DI, Palcic B. Reconstruction of in vivo skin autofluorescence spectrum from microscopic properties by Monte Carlo simulation. J Photochem Photobiol B Biol. 1997;38:234–40.Google Scholar
  47. 47.
    Chen R, Huang Z, Lui H, Hamzavi I, Mclean DI, Xie S, Zeng H. Monte Carlo simulation of cutaneous reflectance and fluorescence measurements—the effect of melanin contents and localization. J Photochem Photobiol B Biol. 2007;86:219–26.Google Scholar
  48. 48.
    Wang S, Zhao J, Lui H, He Q, Zeng H. Monte Carlo simulation of near infrared autofluorescence measurements of in vivo skin. J Photochem Photobiol B Biol. 2011;105:183–9.Google Scholar
  49. 49.
    Wang S, Zhao J, Lui H, He Q, Zeng H. A modular Raman microspectroscopy system for biological tissue analysis. Spectroscopy. 2010;24:577–83.Google Scholar
  50. 50.
    Novikova T, Rehbinder J, Deby S, Haddad H, Vizet J, Pierangelo A, Validire P, Benali A, Gayet B, Teig B, Nazac A, Drévillon B, Moreau F, De Martino A. Multi-spectral Mueller matrix imaging polarimetry for studies of human tissues. In: Biomedical optics, OSA Technical Digest TTh3B, 2; 2016.Google Scholar
  51. 51.
    Qi J, Elson DS. Mueller polarimetric imaging for surgical and diagnostic applications: a review. J Biophotonics. 2017;10:950.Google Scholar
  52. 52.
    Antonelli M-R, Pierangelo A, Novikova T, Validire P, Benali A, Gayet B, De Martino A. Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data. Opt Express. 2010;18(10):10200–8.Google Scholar
  53. 53.
    Du E, He H, Zeng N, Sun M, Guo Y, Wu J, Liu S, Ma H. Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues. J Biomed Opt. 2014;19(7):076013-1–8.Google Scholar
  54. 54.
    Lu S-Y, Chipman RA. Interpretation of Mueller matrices based on polar decomposition. J Opt Soc Am A. 1996;13(5):1106–13.Google Scholar
  55. 55.
    Agarwal N, Yoon J, Garcia-Caurel E, Novikova T, Vanel J-C, Pierangelo A, Bykov A, Popov A, Meglinski I, Ossikovski R. Spatial evolution of depolarization in homogeneous turbid media within the differential Mueller matrix formalism. Opt Lett. 2015;40:5634–7.Google Scholar
  56. 56.
    Doronin A, Macdonald C, Meglinski IV. Propagation of coherent polarized light in turbid highly scattering medium. J Biomed Opt. 2014;19(2):025005.Google Scholar
  57. 57.
    Kuzmin V, Meglinski I. Coherent effects of multiple scattering for scalar and electromagnetic fields: Monte-Carlo simulation and Milne-like solutions. Opt Commun. 2007;273(2):307–10.Google Scholar
  58. 58.
    Nieuwenhuizen T, Luck J. Skin layer of diffusive media. Phys Rev E. 1993;48(1):569–88.Google Scholar
  59. 59.
    Amic E, Luck J, Nieuwenhuizen TM. Anisotropic multiple scattering in diffusive media. J Phys A Math Gen. 1996;29(16):4915–55.MathSciNetzbMATHGoogle Scholar
  60. 60.
    Kuzmin V. The Milne problem solution for the temporal correlation function of an electromagnetic field. Opt Spectrosc. 2002;93(3):439–48.Google Scholar
  61. 61.
    Kuzmin V, Aksenova E. A generalized Milne solution for the correlation effects of multiple light scattering with polarization. J Exp Theor Phys. 2003;96(5):816–31.Google Scholar
  62. 62.
    Kirillin M, Meglinski I, Kuzmin V, Sergeeva E, Myllylä R. Simulation of optical coherence tomography images by Monte Carlo modeling based on polarization vector approach. Opt Express. 2010;18(21):21714–24.Google Scholar
  63. 63.
    Doronin A, Radosevich AJ, Backman V, Meglinski I. Comparison of two Monte Carlo models of propagation of coherent polarized light in turbid scattering media. Proc SPIE. 2014;8952:89520F.Google Scholar
  64. 64.
    Doronin A, Radosevich AJ, Backman V, Meglinski I. Two electric field Monte Carlo models of coherent backscattering of polarized light. J Opt Soc Am A. 2014;31(11):2394–400.Google Scholar
  65. 65.
    Meglinski I, Kirillin M, Kuzmin V, Myllylä R. Simulation of polarization-sensitive optical coherence tomography images by a Monte Carlo method. Opt Lett. 2008;33(14):1581–3.Google Scholar
  66. 66.
    Doronin A, Vera N, Staforelli JP, Coelho P, Meglinski I. Propagation of cylindrical vector laser beams in turbid tissue-like scattering media. Photonics. 2019;6(2):56.Google Scholar
  67. 67.
    Wollweber M, Roth B. Raman sensing and its multimodal combination with optoacoustics and OCT for applications in the life sciences. Sensors. 2019;19(10):2387.Google Scholar

Copyright information

© Korean Society of Medical and Biological Engineering 2019

Authors and Affiliations

  • Ilya Krasnikov
    • 1
    • 2
  • Alexey Seteikin
    • 1
    • 2
    Email author
  • Bernhard Roth
    • 3
    • 4
  1. 1.Amur State UniversityBlagoveshchenskRussia
  2. 2.Immanuel Kant Baltic Federal UniversityKaliningradRussia
  3. 3.Hannover Centre for Optical TechnologiesHannoverGermany
  4. 4.Cluster of Excellence PhoenixDLeibniz University HannoverHannoverGermany

Personalised recommendations