Biomedical Engineering Letters

, Volume 8, Issue 4, pp 373–382 | Cite as

The earth mover’s distance and Bayesian linear discriminant analysis for epileptic seizure detection in scalp EEG

  • Shasha YuanEmail author
  • Jinxing Liu
  • Junliang Shang
  • Xiangzhen Kong
  • Qi Yuan
  • Zhen Ma
Original Article


Since epileptic seizure is unpredictable and paroxysmal, an automatic system for seizure detecting could be of great significance and assistance to patients and medical staff. In this paper, a novel method is proposed for multichannel patient-specific seizure detection applying the earth mover’s distance (EMD) in scalp EEG. Firstly, the wavelet decomposition is executed to the original EEGs with five scales, the scale 3, 4 and 5 are selected and transformed into histograms and afterwards the distances between histograms in pairs are computed applying the earth mover’s distance as effective features. Then, the EMD features are sent to the classifier based on the Bayesian linear discriminant analysis (BLDA) for classification, and an efficient postprocessing procedure is applied to improve the detection system precision, finally. To evaluate the performance of the proposed method, the CHB-MIT scalp EEG database with 958 h EEG recordings from 23 epileptic patients is used and a relatively satisfactory detection rate is achieved with the average sensitivity of 95.65% and false detection rate of 0.68/h. The good performance of this algorithm indicates the potential application for seizure monitoring in clinical practice.


Epilepsy Seizure detection Scalp EEG The earth mover’s distance BLDA classification 



This study was funded by National Natural Science Foundation of China (No. 61701279) and Shandong Provincial Natural Science Foundation (No. ZR2017PF006), and jointly supported by the National Natural Science Foundation of China (Nos. 61572284, 61502272, 61702299 and 61501283), and China Postdoctoral Science Foundation (No. 2015M582129).

Compliance with ethical standards

Conflict of interest

All authors declared that they have no conflicts of interest to this work.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Hunyadi B, Signoretto M, Van Paesschen W, Suykens JA, Van Huffel S, De Vos M. Incorporating structural information from the multichannel EEG improves patient-specific seizure detection. Clin Neurophysiol. 2012;123(12):2352–61.CrossRefGoogle Scholar
  2. 2.
    Sharma P, Khan YU, Farooq O, Tripathi M, Adeli H. A wavelet-statistical features approach for nonconvulsive seizure detection. Clin EEG Neurosci. 2014;45(4):274–84.CrossRefGoogle Scholar
  3. 3.
    Fu K, Qu J, Chai Y, Zou T. Hilbert marginal spectrum analysis for automatic seizure detection in EEG signals. Biomed Signal Process Control. 2015;18:179–85.CrossRefGoogle Scholar
  4. 4.
    Shoeb A, Edwards H, Connolly J, Bourgeois B, Treves ST, Guttag J. Patient-specific seizure onset detection. Epilepsy Behav. 2004;5(4):483–98.CrossRefGoogle Scholar
  5. 5.
    Jr CWH, Sarkar A. Mutual information in natural position order of electroencephalogram is significantly increased at seizure onset. Med Biol Eng Comput. 2011;49(2):133–41.CrossRefGoogle Scholar
  6. 6.
    Faust O, Acharya UR, Adeli H. Adeli. A Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis. Seizure. 2015;26:56–64.CrossRefGoogle Scholar
  7. 7.
    Qu H, Gotman J. A patient-specific algorithm for the detection of seizure onset in long-term EEG monitoring: possible use as a warning device. IEEE Trans Biomed Eng. 1997;44:115–22.CrossRefGoogle Scholar
  8. 8.
    Gotman J. Automatic recognition of epileptic seizures in the EEG. Electroencephalogr Clin Neurophysiol. 1982;54(5):530–40.CrossRefGoogle Scholar
  9. 9.
    Khan YU, Gotman J. Wavelet based automatic seizure detection in intracerebral electroencephalogram. Clin Neurophysiol. 2003;114(5):898–908.CrossRefGoogle Scholar
  10. 10.
    Qu H, Gotman J. A seizure warning system for long-term epilepsy monitoring. Neurology. 1995;45:2250–4.CrossRefGoogle Scholar
  11. 11.
    Meier R, Dittrich H, Schulze-Bonhage A, Aertsen A. Detecting epileptic seizures in long-term human EEG: a new approach to automatic online and real-time detection and classification of polymorphic seizure patterns. J Clin Neurophysiol. 2008;25:119–31.CrossRefGoogle Scholar
  12. 12.
    Zhu JD, Lin CF, Chang SH, Wang JH, Peng TI, Chien YY. Analysis of spike waves in epilepsy using Hilbert–Huang transform. J Med Syst. 2015;39(1):170.CrossRefGoogle Scholar
  13. 13.
    Kalbkhani H, Shayesteh MG. Stockwell transform for epileptic seizure detection from EEG signals. Biomed Signal Process Control. 2017;38:108–18.CrossRefGoogle Scholar
  14. 14.
    Hsu KC, Yu SN. Detection of seizures in EEG using subband nonlinear parameters and genetic algorithm. Comput Biol Med. 2010;40(10):823–30.CrossRefGoogle Scholar
  15. 15.
    Yuan Q, Zhou W, Yuan S, Li X, Wang J, Jia G. Epileptic EEG classification based on kernel sparse representation. Int J Neural Syst. 2014;24(04):1450015.CrossRefGoogle Scholar
  16. 16.
    Liu Y, Zhou W, Yuan Q, Chen S. Automatic seizure detection using wavelet transform and SVM in long-term intracranial EEG. IEEE Trans Neural Syst Rehabil Eng. 2012;20(6):749–55.CrossRefGoogle Scholar
  17. 17.
    Logesparan L, Casson AJ, Rodriguez-Villegas E. Optimal features for online seizure detection. Med Biol Eng Comput. 2012;50(7):659–69.CrossRefGoogle Scholar
  18. 18.
    Guo L, Rivero D, Pazos A. Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. J Neurosci Methods. 2010;193(1):156–63.CrossRefGoogle Scholar
  19. 19.
    Chua KC, Chandran V, Acharya UR, Lim CM. Application of higher order spectra to identify epileptic EEG. J Med Syst. 2011;35(6):1563–71.CrossRefGoogle Scholar
  20. 20.
    Rubner Y, Tomasi C, Guibas LJ. The earth mover’s distance as a metric for image retrieval. Int J Comput Vis. 2000;40(2):99–121.CrossRefGoogle Scholar
  21. 21.
    Grauman K, Darrell T. Fast contour matching using approximate earth mover’s distance. IEEE Conf Comput Vis Pattern Recognit. 2004;1:220–7.Google Scholar
  22. 22.
    Indyk P, Thaper N. Fast color image retrieval via embeddings. In: International workshop on statistical & computational theories of vision 2003.Google Scholar
  23. 23.
    Tan H, Ngo CW. Common pattern discovery using earth movers distance and local flow maximization. IEEE Int Conf Comput Vis. 2005;2:1222–9.Google Scholar
  24. 24.
    Hoffmann U, Vesin JM, Ebrahimi T, Diserens K. An efficient P300-based brain–computer interface for disabled subjects. J Neurosci Methods. 2008;167(1):115–25.CrossRefGoogle Scholar
  25. 25.
    Lei X, Yang P, Yao D. An empirical Bayesian framework for brain computer interfaces. IEEE Trans Neural Syst Rehabil Eng. 2009;17:521–9.CrossRefGoogle Scholar
  26. 26.
    Shoeb AH, Guttag JV. Application of machine learning to epileptic seizure detection. In: International conference on machine learning 2010. pp. 975–982.Google Scholar
  27. 27.
    Saab ME, Gotman J. A system to detect the onset of epileptic seizures in scalp EEG. Clin Neurophysiol. 2005;116:427–42.CrossRefGoogle Scholar
  28. 28.
    Ling H, Okada K. An efficient earth mover’s distance algorithm for robust histogram comparison. IEEE Trans Pattern Anal Mach Intell. 2006;29(5):840–53.CrossRefGoogle Scholar
  29. 29.
    Fathima T, Khan YU, Bedeeuzzaman M, Farooq O. Discriminant analysis for epileptic seizure detection. In: international conference on devices and communications 2011. pp. 1–5.Google Scholar
  30. 30.
    MacKay DJC. Bayesian interpolation. Neural Comput. 1992;4(3):415–47.CrossRefGoogle Scholar
  31. 31.
    Temko A, Thomas E, Marnane W, Lightbody G, Boylan G. EEG-based neonatal seizure detection with Support Vector Machines. Clin Neurophysiol. 2011;122:464–73.CrossRefGoogle Scholar
  32. 32.
    Grewal S, Gotman J. An automatic warning system for epileptic seizures recorded on intracerebral EEGs. Clin Neurophysiol. 2005;116(10):2460–72.CrossRefGoogle Scholar
  33. 33.
    Wang L, Xue W, Li Y, Luo M, Huang J, Cui W, Huang C. Automatic epileptic seizure detection in EEG signals using multi-domain feature extraction and nonlinear analysis. Entropy. 2017;19(6):222.CrossRefGoogle Scholar
  34. 34.
    Li Y, Wang X, Luo L, Li K, Yang X, Guo Q. Epileptic seizure classification of EEGs using time–frequency analysis based multiscale radial basis functions. IEEE J Biomed Health Inform. 2018;22(2):386–97.CrossRefGoogle Scholar
  35. 35.
    Li Y, Cui W, Luo M, Li K, Wang L. Epileptic seizure detection based on time-frequency images of EEG signals using Gaussian mixture model and gray level co-occurrence matrix features. Int J Neural Syst. 2018;28(7):1850003.CrossRefGoogle Scholar
  36. 36.
    Majumdar KK, Vardhan P. Automatic seizure detection in ECoG by differential operator and windowed variance. IEEE Trans Neural Syst Rehabil Eng. 2011;19(4):356–65.CrossRefGoogle Scholar
  37. 37.
    Nasehi S, Pourghassem H. Epileptic seizure onset detection algorithm using dynamic cascade feed-forward neural networks. In: IEEE international conference on intelligent computation and bio-medical instrumentation 2011. pp. 193–195.Google Scholar
  38. 38.
    Khan YU, Rafiuddin N, Farooq OAutomated seizure detection in scalp EEG using multiple wavelet scales. In: IEEE international conference on signal processing, computing and control (ISPCC) 2012. pp. 1–5.Google Scholar
  39. 39.
    Orosco L, Correa AG, Diez P, Laciar E. Patient non-specific algorithm for seizures detection in scalp EEG. Comput Biol Med. 2016;71(C):128–34.CrossRefGoogle Scholar
  40. 40.
    Samiee K, Kovács P, Gabbouj M. Epileptic seizure detection in long-term EEG records using sparse rational decomposition and local Gabor binary patterns feature extraction. Knowl Based Syst. 2017;118:228–40.CrossRefGoogle Scholar
  41. 41.
    Tsiouris ΚΜ, Markoula S, Konitsiotis S, Koutsouris DD, Fotiadis DI. A robust unsupervised epileptic seizure detection methodology to accelerate large EEG database evaluation. Biomed Signal Process Control. 2018;40:275–85.CrossRefGoogle Scholar

Copyright information

© Korean Society of Medical and Biological Engineering and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Information Science and EngineeringQufu Normal UniversityRizhaoPeople’s Republic of China
  2. 2.Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and ElectronicsShandong Normal UniversityJinanPeople’s Republic of China
  3. 3.Department of Information EngineeringBinzhou UniversityBinzhouPeople’s Republic of China

Personalised recommendations