Advertisement

Biomedical Engineering Letters

, Volume 9, Issue 1, pp 53–71 | Cite as

Wearable EEG and beyond

  • Alexander J. CassonEmail author
Review Article

Abstract

The electroencephalogram (EEG) is a widely used non-invasive method for monitoring the brain. It is based upon placing conductive electrodes on the scalp which measure the small electrical potentials that arise outside of the head due to neuronal action within the brain. Historically this has been a large and bulky technology, restricted to the monitoring of subjects in a lab or clinic while they are stationary. Over the last decade much research effort has been put into the creation of “wearable EEG” which overcomes these limitations and allows the long term non-invasive recording of brain signals while people are out of the lab and moving about. This paper reviews the recent progress in this field, with particular emphasis on the electrodes used to make connections to the head and the physical EEG hardware. The emergence of conformal “tattoo” type EEG electrodes is highlighted as a key next step for giving very small and socially discrete units. In addition, new recommendations for the performance validation of novel electrode technologies are given, with standards in this area seen as the current main bottleneck to the wider take up of wearable EEG. The paper concludes by considering the next steps in the creation of next generation wearable EEG units, showing that a wide range of research avenues are present.

Keywords

Electroencephalography Electrodes Wearable 

Notes

Compliance with ethical standards

Conflict of interest

The author has no conflicts of interest to declare.

Ethical statement

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Smith SJM. EEG in the diagnosis, classification, and management of patients with epilepsy. J Neurol Neurosurg Psychiatry. 2005;76(2):ii2–7.Google Scholar
  2. 2.
    Allen JJB, Kline JP. Frontal EEG asymmetry, emotion, and psychopathology: the first, and the next 25 years. Biol Psychol. 2004;67(1–2):1–5.Google Scholar
  3. 3.
    Casson AJ, Yates DC, Smith SJ, Duncan JS, Rodriguez-Villegas E. Wearable electroencephalography. IEEE Eng Med Biol Mag. 2010;29(3):44–56.Google Scholar
  4. 4.
    Debener S, Minow F, Emkes R, Gandras K, de Vos M. How about taking a low-cost, small, and wireless EEG for a walk? Psychophysiology. 2012;49(11):1617–21.Google Scholar
  5. 5.
    Mihajlovic V, Grundlehner B, Vullers R, Penders J. Wearable, wireless EEG solutions in daily life applications: What are we missing? IEEE J Biomed Health Inf. 2015;19(1):6–21.Google Scholar
  6. 6.
    Mullen TR, Kothe CAE, Chi YM, Ojeda A, Kerth T, Makeig S, Jung T, Cauwenberghs G. Real-time neuroimaging and cognitive monitoring using wearable dry EEG. IEEE Trans Biomed Eng. 2015;62(11):2553–67.Google Scholar
  7. 7.
    Kryger MH, Roth T, Dement WC, editors. Principles and practice of sleep medicine. 5th ed. St. Louis: Elsevier; 2011.Google Scholar
  8. 8.
    Arico P, Borghini G, Flumeri GD, Sciaraffa N, Babiloni F. Passive BCI beyond the lab: current trends and future directions. Physiol Meas. 2018;39(8):1–19.Google Scholar
  9. 9.
    Binnie CDJ, Rowan AJ, Gutter TH. A manual of electroencephalographic technology. Cambridge: Cambridge University Press; 1982.Google Scholar
  10. 10.
    Casson AJ, Abdulaal M, Dulabh M, Kohli S, Krachunov S, Trimble EV. Electroencephalogram. In: Tamura T, Chen W, editors. Seamless healthcare monitoring. Cham: Springer; 2018. p. 45–81.Google Scholar
  11. 11.
    Cohen MX. Analyzing neural time series data: theory and practice. Boston: MIT Press; 2014.Google Scholar
  12. 12.
    Im C, Seo JM. A review of electrodes for the electrical brain signal recording. Biomed Eng Lett. 2016;6(3):104–12.Google Scholar
  13. 13.
    Lopez-Gordo MA, Sanchez-Morillo D, Valle FP. Dry EEG electrodes. Sensors. 2014;14(7):12847–70.Google Scholar
  14. 14.
    Chi YM, Jung TP, Cauwenberghs G. Dry-contact and noncontact biopotential electrodes: methodological review. IEEE Rev Biomed Eng. 2010;3(1):106–19.Google Scholar
  15. 15.
    Xu J, Mitra S, Van Hoof C, Yazicioglu RF, Makinwa KAA. Active electrodes for wearable EEG acquisition: review and electronics design methodology. IEEE Rev Biomed Eng. 2017;10(1):187–98.Google Scholar
  16. 16.
    Mitchell S, Sherry C. Physics for OCR A for double award. Oxford: Heinemann Educational Publishers; 2001.Google Scholar
  17. 17.
    Casson AJ, Chen G, Rodriguez-Villegas E. Wearable algorithms: an overview of a truly multi-disciplinary problem. In: Sazonov E, Neuman MR, editors. Wearable sensors: fundamentals, implementation and applications Amsterdam. Amsterdam: Elsevier; 2014. p. 353–82.Google Scholar
  18. 18.
    Casson AJ, Rodriguez-Villegas E. Data reduction techniques to facilitate wireless and long term AEEG epilepsy monitoring. In: Conference proceedings of IEEE NER. 2007; Hawaii.Google Scholar
  19. 19.
    Raduntz T. Signal quality evaluation of emerging EEG devices. Front Physiol. 2018;9(98):1–12.Google Scholar
  20. 20.
    Hairston WD, Whitaker KW, Ries AJ, Vettel JM, Bradford JC, Kerick SE, McDowell K. Usability of four commercially-oriented EEG systems. J Neural Eng. 2014;11(4):046018.Google Scholar
  21. 21.
    mBrainTrain. Smarting EEG unit. 2018. https://mbraintrain.com/smarting/.
  22. 22.
    Brain Products. LiveAmp EEG unit. 2018. https://www.brainproducts.com/.
  23. 23.
    gtec. g.Nautilus EEG unit. 2018. http://www.gtec.at/.
  24. 24.
    Cognionics. Mobile-128 EEG unit. 2018. https://www.cognionics.net/mobile-128.
  25. 25.
    Emotiv. EPOC Flex EEG unit. 2018. https://www.emotiv.com/epoc-flex/.
  26. 26.
    Waltz E. Measuring free will of bungee jumpers. IEEE Spectrum. 2018;2018(2):1.Google Scholar
  27. 27.
    mBrainTrain. EEG in the rainforests and caves of the Amazon jungle. 2018. https://www.facebook.com/pg/mBrainTrain/posts/.
  28. 28.
    Gwin JT, Gramann K, Makeig S, Ferris DP. Electrocortical activity is coupled to gait cycle phase during treadmill walking. NeuroImage. 2011;54(2):1289–96.Google Scholar
  29. 29.
    Wagner J, Solis-Escalante T, Grieshofer P, Neuper C, Muller-Putz G, Scherer R. Level of participation in robotic-assisted treadmill walking modulates midline sensorimotor EEG rhythms in able-bodied subjects. NeuroImage. 2012;63(3):1203–11.Google Scholar
  30. 30.
    Nordin AD, Hairston WD, Ferris D. Overcoming obstacles in mobile EEG. In: Conference proceedings of IEEE EMBC. 2018; Hawaii.Google Scholar
  31. 31.
    Kohli S, Casson AJ. Towards out-of-the-lab EEG in uncontrolled environments: feasibility study of dry EEG recordings during exercise bike riding. In: Conference proceedings of IEEE EMBC. 2015; Milan.Google Scholar
  32. 32.
    Zink R, Hunyadi B, Van Huffel S, Vos MD. Mobile EEG on the bike: disentangling attentional and physical contributions to auditory attention tasks. J Neural Eng. 2016;13(4):046017.Google Scholar
  33. 33.
    Casson AJ, Trimble EV. Enabling free movement EEG tasks by eye fixation and gyroscope motion correction: EEG effects of color priming in dress shopping. IEEE Access. 2018;6(1):62975–87.Google Scholar
  34. 34.
    Nordin AD, Hairston WD, Ferris DP. Dual-electrode motion artifact cancellation for mobile electroencephalography. J Neural Eng. 2018;15(5):056024.Google Scholar
  35. 35.
    Iber C, Ancoli-Israel S, Chesson A, Quan SF, editors. The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications. Westchester: American Academy of Sleep Medicine; 2007.Google Scholar
  36. 36.
    Grass Technologies. EC2 conductive paste. 2018. http://www.grasstechnologies.com/.
  37. 37.
    Taheri BA, Knight RT, Smith RL. A dry electrode for EEG recording. Electroencephalogr Clin Neurophysiol. 1994;90(5):376–83.Google Scholar
  38. 38.
    de Camp NV, Kalinka G, Bergeler J. Light-cured polymer electrodes for non-invasive EEG recordings. Sci Rep. 2018;8(14041):1–9.Google Scholar
  39. 39.
    Nathan V, Jafari R. Design principles and dynamic front end reconfiguration for low noise EEG acquisition with finger based dry electrodes. IEEE Trans Biomed Circuits Syst. 2015;9(5):631–40.Google Scholar
  40. 40.
    Wearable sensing. Home page. 2016. http://www.wearablesensing.com/.
  41. 41.
    Cognionics. Home page. 2016. http://www.cognionics.com/.
  42. 42.
    Neuroelectrics. Products/electrodes. 2016. http://neuroelectrics.com/.
  43. 43.
    Mindo. Home page. 2016. http://mindo.com.tw/en/.
  44. 44.
    gtec. Products/g.SAHARA. 2016. http://www.gtec.at/.
  45. 45.
    Krachunov S, Casson AJ. 3D printed dry EEG electrodes. Sensors. 2016;16(10):1635.Google Scholar
  46. 46.
    Salvo P, Raedt R, Carrette E, Schaubroeck D, Vanfleteren J, Cardon L. A 3D printed dry electrode for ECG/EEG recording. Sens Actuator A Phys. 2012;174(2):96–102.Google Scholar
  47. 47.
    Beach C, Krachunov S, Pope J, Fafoutis X, Piechocki RJ, Craddock I, Casson AJ. An ultra low power personalizable wrist worn ECG monitor integrated with IoT infrastructure. IEEE Access. 2018;6(1):44010–21.Google Scholar
  48. 48.
    Huigen E, Peper A, Grimbergen CA. Investigation into the origin of the noise of surface electrodes. Med Biol Eng Comput. 2002;40(3):332–8.Google Scholar
  49. 49.
    Etienne A, Krishnan A, Kelly S, Grover P. EEG systems for accommodating thick and curly hair. In: Conference proceedings of IEEE EMBC. 2018; Hawaii.Google Scholar
  50. 50.
    Lofhede J, Seoane F, Thordstein M. Soft textile electrodes for EEG monitoring. In: Conference proceedings of IEEE ITAB. 2010; Corfu.Google Scholar
  51. 51.
    Matiko JW, Wei Y, Torah R, Grabham N, Paul G, Beeby S, Tudor J. Wearable EEG headband using printed electrodes and powered by energy harvesting for emotion monitoring in ambient assisted living. Smart Mater Struct. 2015;24(12):125028.Google Scholar
  52. 52.
    Karim N, Afroj S, Malandraki A, Butterworth S, Beach C, Rigout M, Novoselov KS, Casson AJ, Yeates SG. All inkjet-printed graphene-based conductive patterns for wearable e-textile applications. J Mater Chem C. 2017;5(44):11640–8.Google Scholar
  53. 53.
    Slipher GA, Hairston WD, Bradford JC, Bain ED, Mrozek RA. Carbon nanofiber-filled conductive silicone elastomers as soft, dry bioelectronic interfaces. PloS One. 2018;13(2):e0189415.Google Scholar
  54. 54.
    Verwulgen S, Lacko D, Justine H, Kustermans S, Moons S, Thys F, Zelck S, Vaes K, Huysmans T, Vleugels J, Truijen S. Determining comfortable pressure ranges for wearable EEG headsets. In: Conference proceedings of AHFE 2018 international conference on human factors and wearable technologies, and human factors in game design and virtual environments. 2018; Orlando.Google Scholar
  55. 55.
    Robbins K, Su KM, Hairston WD. An 18-subject EEG data collection using a visual-oddball task, designed for benchmarking algorithms and headset performance comparisons. Data Brief. 2018;16(1):227–30.Google Scholar
  56. 56.
    Holmes MD. Dense array EEG: methodology and new hypothesis on epilepsy syndromes. Epilepsia. 2008;49(s3):3–14.Google Scholar
  57. 57.
    Winter BB, Webster JG. Driven-right-leg circuit design. IEEE Trans Biomed Eng. 1983;30(1):62–6.Google Scholar
  58. 58.
    camNtech Actiwave. Home page. 2013. http://www.camntech.com/.
  59. 59.
    Matthews R, McDonald NJ, Hervieux P, Turner PJ, Steindorf MA. A wearable physiological sensor suite for unobtrusive monitoring of physiological and cognitive state. In: Conference proceedings of IEEE EMBC. 2007; Lyon.Google Scholar
  60. 60.
    Xu J, Yazicioglu RF, Grundlehner B, Harpe P, Makinwa KAA, Van Hoof C. A 160 \(\mu\)W 8-channel active electrode system for EEG monitoring. IEEE Trans Biomed Circuits Syst. 2011;5(6):555–67.Google Scholar
  61. 61.
    Gargiulo G, Bifulco P, Calvo RA, Cesarelli M, Jin C, van Schaik A. A mobile EEG system with dry electrodes. In: Conference proceedings of IEEE BioCAS. 2008; Baltimore.Google Scholar
  62. 62.
    IMEC. Holst Ccntre and Panasonic present wireless low-power active-electrode EEG headset. 2012. http://www.imec.be/.
  63. 63.
    Patki S, Grundlehner B, Verwegen A, Mitra S, Xu J, Matsumoto A, Yazicioglu RF, Penders J. Wireless EEG system with real time impedance monitoring and active electrodes. In: Conference proceedings of IEEE BioCAS. 2012; Hsinchu.Google Scholar
  64. 64.
    Estepp JR, Christensen JC, Monnin JW, Davis IM, Wilson GF. Validation of a dry electrode system for EEG. In: Conference proceedings of human factors and ergonomics society. 2009; San Antonio.Google Scholar
  65. 65.
    Casson AJ. Artificial neural network classification of operator workload with an assessment of time variation and noise-enhancement to increase performance. Front Neurosci. 2014;8(372):1–10.Google Scholar
  66. 66.
    Tallgren P, Vanhatalo S, Kaila K, Voipio J. Evaluation of commercially available electrodes and gels for recording of slow EEG potentials. Clin Neurophysiol. 2005;116(4):799–806.Google Scholar
  67. 67.
    Kohli S, Krachunov S, Casson AJ. Towards closed-loop transcranial electrical stimulation: a comparison of methods for real time tES-EEG artefact removal using a phantom head model. Brain Stim. 2017;10(2):467–8.Google Scholar
  68. 68.
    Hairston WD, Slipher GA, Yu AB. Ballistic gelatin as a putative substrate for EEG phantom devices. In: Conference proceedings of IEEE EMBC. 2016; Orlando.Google Scholar
  69. 69.
    Symeonidou ER, Nordin AD, Hairston WD, Ferris DP. Effects of cable sway, electrode surface area, and electrode mass on electroencephalography signal quality during motion. Sensors. 2018;18(4):1073.Google Scholar
  70. 70.
    Krauss GL, Fisher RS. The Johns Hopkins atlas of digital EEG: an interactive training guide. Baltimore: Johns Hopkins University Press; 2006.Google Scholar
  71. 71.
    Kemp B, Olivan J. European data format ‘plus’ (EDF+), an EDF alike standard format for the exchange of physiological data. Clin Neurophysiol. 2003;114(9):1755–61.Google Scholar
  72. 72.
    Casson AJ, Rodriguez-Villegas E. Utilising noise to improve an interictal spike detector. J Neurosci Meth. 2011;201(1):262–8.Google Scholar
  73. 73.
    Hairston WD, Nonte M. Using BCIs for benchmarking adaptive and low-resolution DAQ EEG approaches. In: Conference proceedings of first biannual neuroadaptive technology. 2017; Berlin.Google Scholar
  74. 74.
    Poirier CJ, Gadfort P, Dixon AMR, Nonte MW, Conroy JK, Hairston WD. Hardware implementation of an adaptive data acquisition system for real-world EEG. In: Conference proceedings of IEEE EMBC. 2018; Hawaii.Google Scholar
  75. 75.
    Nonte MW, Conroy J, Gadfort P, Hairston WD. Online adaptive data acquisition enabling ultra-low power real-world EEG. In: Conference proceedings of IEEE ISCAS. 2017; Baltimore.Google Scholar
  76. 76.
    Bin Altaf MA, Zhang C, Yoo J. A 16-channel patient-specific seizure onset and termination detection SoC with impedance-adaptive transcranial electrical stimulator. IEEE J Solid-State Circuits. 2015;50(11):2728–40.Google Scholar
  77. 77.
    Imtiaz SA, Jiang Z, Rodriguez-Villegas E. A 950 nW analog-based data reduction chip for wearable EEG systems in epilepsy. IEEE J Solid-State Circuits. 2017;52(9):2362–73.Google Scholar
  78. 78.
    Imtiaz SA, Jiang Z, Rodriguez-Villegas E. An ultralow power system on chip for automatic sleep staging. IEEE J Solid-State Circuits. 2017;52(3):822–33.Google Scholar
  79. 79.
    Islam R, Hairston WD, Oates T, Mohsenin T. An EEG artifact detection and removal technique for embedded processors. In: Conference proceedings of IEEE SPMB. 2017; Philadelphia.Google Scholar
  80. 80.
    Lab Streaming Layer. Home page. 2014. https://github.com/sccn/labstreaminglayer.
  81. 81.
    Blum S, Debener S, Emkes R, Volkening N, Fudickar S, Bleichner MG. EEG recording and online signal processing on Android: a multiapp framework for brain-computer interfaces on smartphone. BioMed Res Int. 2017;2017(3072870):1–12.Google Scholar
  82. 82.
    Gorgolewski KJ, Auer T, Calhoun VD, Craddock RC, Das S, Duff EP, Flandin G, Ghosh SS, Glatard T, Halchenko YO, Handwerker DA, Hanke M, Keator D, Li X, Michael Z, Maumet C, Nichols BN, Nichols TE, Pellman J, Poline JB, Rokem A, Schaefer G, Sochat V, Triplett W, Turner JA, Varoquaux G, Poldrack RA. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Sci Data. 2016;3(160044):1–9.Google Scholar
  83. 83.
    Lin CT, Liao LD, Liu YH, Wang IJ, Lin BS, Chang JY. Novel dry polymer foam electrodes for long-term EEG measurement. IEEE Trans Biomed Eng. 2011;58(5):1200–7.Google Scholar
  84. 84.
    Debener S, Emkes R, De Vos M, Bleichner M. Unobtrusive ambulatory EEG using a smartphone and flexible printed electrodes around the ear. Sci Rep. 2015;5(16743):1–11.Google Scholar
  85. 85.
    Looney D, Kidmose P, Park C, Ungstrup M, Rank ML, Rosenkranz K, Mandic D. The in-the-ear recording concept: User-centered and wearable brain monitoring. IEEE Pulse. 2012;3(6):32–42.Google Scholar
  86. 86.
    Kidmose P, Looney D, Ungstrup M, Rank ML, Mandic DP. A study of evoked potentials from ear-EEG. IEEE Trans Biomed Eng. 2013;60(10):2824–30.Google Scholar
  87. 87.
    Mikkelsen KB, Villadsen DB, Otto M, Kidmose P. Automatic sleep staging using ear-EEG. Biomed Eng Online. 2017;16(11):1–15.Google Scholar
  88. 88.
    Goverdovsky V, von Rosenberg W, Nakamura T, Looney D, Sharp DJ, Papavassiliou C, Morrell MJ, Mandic DP. Hearables: multimodal physiological in-ear sensing. Sci Rep. 2017;7(6948):1–10.Google Scholar
  89. 89.
    Kim DH, Lu N, Ma R, Kim YS, Kim RH, Wang S, Wu J, Won SM, Tao H, Islam A, Yu KJ, Kim T, Chowdhury R, Ying M, Xu L, Li M, Chung HJ, Keum H, McCormick M, Liu P, Zhang YW, Omenetto FG, Huang Y, Coleman T, Rogers JA. Epidermal electronics. Science. 2011;333(6044):838843.Google Scholar
  90. 90.
    Norton JJ, Lee DS, Lee JW, Lee W, Kwon O, Won P, Jung SY, Cheng H, Jeong JW, Akce A, Umunna S, Na I, Kwon YH, Wang XQ, Liu Z, Paik U, Huang Y, Bretl T, Yeo WH, Rogers JA. Soft, curved electrode systems capable of integration on the auricle as a persistent brain-computer interface. Proc Natl Acad Sci USA. 2015;112(13):39203925.Google Scholar
  91. 91.
    Jacob NK, Balaban E, Saunders R, Batchelor JC, Yeates SG, Casson AJ. An exploration of behind-the-ear ECG signals from a single ear using inkjet printed conformal tattoo electrodes. In: Conference proceedings of IEEE EMBC. 2018; Hawaii.Google Scholar
  92. 92.
    Moy T, Huang L, Rieutort-Louis W, Wu C, Cuff P, Wagner S, Sturm JC, Verma N. An EEG acquisition and biomarker-extraction system using low-noise-amplifier and compressive-sensing circuits based on flexible, thin-film electronics. IEEE J Solid-State Circuits. 2017;52(1):309–21.Google Scholar
  93. 93.
    Casson AJ, Saunders R, Batchelor JC. Five day attachment ECG electrodes for longitudinal bio-sensing using conformal tattoo substrates. IEEE Sens J. 2017;17(7):2205–14.Google Scholar
  94. 94.
    Mikkelsen KB, Kidmose P, Hansen LK. On the keyhole hypothesis: high mutual information between ear and scalp EEG. Front Hum Neurosci. 2017;11(341):1–9.Google Scholar
  95. 95.
    Muraja-Murro A, Mervaala E, Westeren-Punnonen S, Lepola P, Toyras J, Myllymaa S, Julkunen P, Kantanen AM, Kalviainen R, Myllymaa K. Forehead EEG electrode set versus full-head scalp EEG in 100 patients with altered mental state. Epilepsy Behav. 2015;49(8):245–9.Google Scholar
  96. 96.
    Xu J, Konijnenburg M, Lukita B, Song S, Ha H, van Wegberg R, Sheikhi E, Mazzillo M, Fallica G, Raedt WD, Hoof CV, Helleputte NV. A 665\(\mu\)W silicon photomultiplier-based NIRS/EEG/EIT monitoring ASIC for wearable functional brain imaging. In: Conference proceedings of IEEE ISSCC. 2018; San Francisco.Google Scholar
  97. 97.
    Strickland E. Facebook announces “typing-by-brain” project. IEEE Spectrum. 2017;2017(4):1.Google Scholar
  98. 98.
    Ledezma-Zavala E, Ramrez-Mendoza RA. Towards a new framework for advanced driver assistance systems. IJIDeM. 2018;12(1):215–23.Google Scholar
  99. 99.
    Babiloni F, Cincotti F, Mattia D, Mattiocco M, De Vico Fallani F, Tocci A, Bianchi L, Marciani MG, Astolfi L. Hypermethods for EEG hyperscanning. In: Conference proceedings of IEEE EMBC. 2006; New York.Google Scholar
  100. 100.
    Broccard FD, Mullen T, Chi YM, Peterson D, Iversen JR, Arnold M, Kreutz-Delgado K, Jung TP, Makeig S, Poizner H, Sejnowski T, Cauwenberghs G. Closed-loop brain-machine-body interfaces for noninvasive rehabilitation of movement disorders. Ann Biomed Eng. 2014;42(8):1573–93.Google Scholar
  101. 101.
    Little S, Pogosyan A, Neal S, Zavala B, Zrinzo L, Hariz M, Foltynie T, Limousin P, Ashkan K, FitzGerald J, Green AL, Aziz TZ, Brown P. Adaptive deep brain stimulation in advanced parkinson disease. Ann Neurol. 2013;73(3):449–57.Google Scholar
  102. 102.
    Stanslaski S, Afshar P, Cong P, Giftakis J, Stypulkowski P, Carlson D, Linde D, Ullestad D, Avestruz AT, Denison T. Design and validation of a fully implantable, chronic, closed-loop neuromodulation device with concurrent sensing and stimulation. IEEE Trans Neural Syst Rehabil Eng. 2012;20(4):410–21.Google Scholar
  103. 103.
    Famm K, Litt B, Tracey KJ, Boyden ES, Slaoui M. Drug discovery: a jump-start for electroceuticals. Nature. 2013;496(7444):159161.Google Scholar
  104. 104.
    Zeto. The FIRST true dry electrode EEG system cleared for clinical use by FDA. 2018. http://zeto-inc.com/.

Copyright information

© Korean Society of Medical and Biological Engineering 2019

Authors and Affiliations

  1. 1.School of Electrical and Electronic EngineeringThe University of ManchesterManchesterUK

Personalised recommendations