Effect of Food Colorants and Additives on the Hematological and Histological Characteristics of Albino Rats

  • Mohamed Yassin Ali
  • Abdel Moniem Sadek HassanEmail author
  • Zaher Ahmed Mohamed
  • Mohamed Fawzy Ramadan
Original Article



Food colorants (synthetic, inorganic and natural) represent one of the major categories of food additives. Synthetic colorants were banned due to their adverse effects on animals and human. However, synthetic dyes are still in use because they are cheap, and stable.


In the present in vivo study conducted on female albino rats (Rattus norvegicus), the effect of sunset yellow (SY) and sodium benzoate (NaB) combinations on the hematological and histological profile was assessed. Different combinations of SY plus NaB were dissolved in water and administered daily to experimental rat groups for 12 weeks. Group 1 (control) received only water, group 2 received 5 mg SY plus 10 mg NaB, group 3 received 5 mg SY plus 100 mg NaB, group 4 received 50 mg SY plus 100 mg NaB, group 5 received 50 mg SY plus 10 mg NaB, group 6 received 200 mg SY plus 750 mg NaB, and group 7 received 20 mg SY plus 75 mg NaB. Histopathological examinations were performed on liver and kidney of rats at the end of the experiment.


The results revealed a decrease in RBCs count, hematocrit, WBCs, MCV and Hb levels upon the administration of SY plus NaB. The results also showed no increase in MCH, MCHC and platelet count. Liver and kidney tissues showed some lesions due to the administration of the tested compounds in comparison to the control animals.


The chemical stress caused by the SY and NaB combinations caused some degenerative changes in the liver and kidneys of rats. It could be concluded that SY and NaB combinations causes some damage in liver and kidney tissues of experimental animals. Therefore, using SY and NaB combinations should be limited.


Sodium benzoate Sunset yellow Synthetic food additives Food colorant Hematology Histology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Publication of this article was co-sponsored by the ToxEHS.


  1. 1.
    Public Law 85-929, Food Additives Amendment of 1958. USA, pp. 1784–1789, (1958).Google Scholar
  2. 2.
    FAO/WHO. Evaluation of certain food additives and contaminants, thirty-seventh sixth report of the Joint FAO/WHO Expert Committee on Food Additives, WHO Technical Report Series, No. 806, Geneva (1991).Google Scholar
  3. 3.
    Federal Register. 62 FR 18937, April 17. In Department of Agribusiness and Applied Economics, North Dakota State University, Fargo, ND 58105-5636 (1997).Google Scholar
  4. 4.
    Amchova, P., Kotolova, H. & Ruda-Kucerova, J. Health safety issues of synthetic food colorants. Reg. Toxicol. Pharmacol. 73, 914–922 (2015).CrossRefGoogle Scholar
  5. 5.
    FAO/WHO. Class names and the international numbering system for food additives, (2014).Google Scholar
  6. 6.
    Helal, E. G. E., Zaahkouk, S. A. M. & Mekkawy, H. A. Effect of some food colourants (synthetic and natural products) of young albino rats. Egypt J. Hospital Med. 1, 103–113 (2000).Google Scholar
  7. 7.
    Soltan, S. S. A. & Shehata, M. M. E. M. The effects of using color foods of children on immunity properties and liver, kidney on rats. Food Nutr. Sci. 3, 897–904 (2012).Google Scholar
  8. 8.
    Sharma, U. K., Kumar, R., Gupta, A., Ganguly, R. & Pandey, A. K. Renoprotective effect of cinnamaldehyde in food color induced toxicity. 3 Biotech. 8, 212 (2018).CrossRefGoogle Scholar
  9. 9.
    Sharma, U. K. et al. Ameliorating efficacy of eugenol against metanil yellow induced toxicity in albino Wistar rats. Food Chem. Toxicol. 126, 34–40 (2019).CrossRefGoogle Scholar
  10. 10.
    Garfield, S. in Mauve: How One Man Invented a Color that Changed the World (W.W. Norton & Company, New York, 2002).Google Scholar
  11. 11.
    Chaitanya, L. G. Food coloring: the natural way. Res. J. Chem. Sci. 4, 87–96 (2014).Google Scholar
  12. 12.
    Ali, M. Y., Hassan, G. M., Hassan, A. M. S., Mohamed, Z. A. & Ramadan, M. F. In vivo genotoxicity assessment of sunset yellow and sodium benzoate in female rats. Drug Chem. Toxicol. in press, (2019).Google Scholar
  13. 13.
    Kobylewski, S. & Jacobson, M. F. Toxicology of food dyes. Inter. J. Occupat. Environ. Health 18, 220–246 (2012).CrossRefGoogle Scholar
  14. 14.
    Radwan, S. A., El-Sayed, A. R., Al-Shinnawy, M. S. & Mohamed, O. N. A. Hematological and biochemical changes induced by amaranth impact on male albino rats. Egypt J. Hospital Med. 40, 335–349 (2010).Google Scholar
  15. 15.
    Kusic, H., Juretic, D., Koprivanac, N., Marin, V. & Božic, A. L. Photooxidation processes for an azo dye in aqueous media: Modeling of degradation kinetic and ecological parameters evaluation. J. Hazard. Mat. 185, 1558–1568 (2011).CrossRefGoogle Scholar
  16. 16.
    Committee on Food Chemicals Codex. Food Chemicals Codex. Fifth edition. National Academy Press, Washington DC, p. 463 (2003).Google Scholar
  17. 17.
    Wood, R., Foster, L., Damant, A. & Key, P. in Analytical Methods for Food Additives, 1–14 (CRC Press, Boca Raton, 2004).CrossRefGoogle Scholar
  18. 18.
    EFSA European Food Safety Authority. Scientific opinion on the re-evaluation of sunset yellow FCF (E110) as a food additive. EFSA panel on food additives and nutrient sources added to food (ANS). EFSA Journal, Parma, pp. 1330 (2009).Google Scholar
  19. 19.
    Kus, E. & Eroglu, H. E. Genotoxic and cytotoxic effects of sunset yellow and brilliant blue, colorant food additives, on human blood lymphocytes. Pak. J. Pharm. Sci. 28, 227–230 (2015).Google Scholar
  20. 20.
    Bhattacharjee, M. Evaluation of mitodepressive effect of sunset yellow using Allium sativum assay. Inter. J. Sci. Environ. Technol. 3, 1120–1130 (2014).Google Scholar
  21. 21.
    Dwivedi, K. & Kumar, G. Genetic damage induced by a food coloring dye (sunset yellow) on meristematic cells of Brassica campestris L. J. Environ. Public Health. Article ID 319727, 727 (2015).Google Scholar
  22. 22.
    Paumgartten, F. J. R. et al. Evaluation of the developmental toxicity of annatto in the rat. Food Chem. Toxicol. 40, 1595–1601 (2002).CrossRefGoogle Scholar
  23. 23.
    Kitamura, Y. et al. A subchronic toxicity study of shea nut color in Wister rats. Food Chem. Toxicol. 41, 1537–1542.(2003).CrossRefGoogle Scholar
  24. 24.
    Bautista, A. R. P. L., Moreira, E. L. T., Batista, M. S., Miranda, M. S. & Gomes, I. C. S. Subacute toxicity assessment of annatto in rat. Food Chem. Toxicol. 42, 625–629 (2004).CrossRefGoogle Scholar
  25. 25.
    Attia, Z. I., Basyuni, M. A., Hegazi, M. A. & Okba, S. G. Effect of benzene sulfonic acid, the degraded derivative of the sunset yellow beverages, coloring dyes on the physiology and growth rate of young rats. Egypt. J. Zool. 45, 373–387 (2005).Google Scholar
  26. 26.
    Bordagaray, A., Garcia-Arrona, R., Vidal, M. & Ostra, M. Determination of food colorants in a wide variety of food matrices by microemulsion electrokinetic capillary chromatography. Considerations on the found concentrations and regulated consumption limits. Food Chem. 262, 129–133 (2018).CrossRefGoogle Scholar
  27. 27.
    Mathiyalagan, S., Mandal, B. K. & Ling, Y. C. Determination of synthetic and natural colorants in selected green colored foodstuffs through reverse phase-high performance liquid chromatography. Food Chem. 278, 381–387 (2019).CrossRefGoogle Scholar
  28. 28.
    Sasaki, Y. F. et al. The Comet assay with 8 mouse organs: results with 39 currently used food additives. Mut. Res. Gene. Toxicol. Environ. Mutagen. 519, 103–119 (2002).CrossRefGoogle Scholar
  29. 29.
    Shimada, C., Kiyoshi, K., Sasaki, Yu. F., Sato, I. & Tsuda, S. Differential colon DNA damage induced by azo food additives between rats and mice. J. Toxicol. Sci. 35, 547–554 (2010).CrossRefGoogle Scholar
  30. 30.
    Sayed, H. M., Fouad, D., Ataya, F. S., Hassanf, N. H. A. & Fahmy, M. A. The modifying effect of selenium and vitamins A, C, and E on the genotoxicity induced by sunset yellow in male mice. Mut. Res. 744, 145–153 (2012).CrossRefGoogle Scholar
  31. 31.
    Seetaramaiah, K., Anton Smith, A., Murali, R. & Manavalan, R. Preservatives in food products-review. Inter. J. Pharma. Biol. Arch. 2, 583–599 (2011).Google Scholar
  32. 32.
    Gülçin, I. Antioxidant activity of food constituents: an overview. Arch. Toxicol. 86, 345–391 (2012).CrossRefGoogle Scholar
  33. 33.
    Gülçin, I., Elmastas, M. & Aboul-Eneinc, H. Y. Antioxidant activity of clove oil-A powerful antioxidant source. Arab. J. Chem. 5, 489–499 (2012).CrossRefGoogle Scholar
  34. 34.
    Gülçin, I. & Beydemir, S. Phenolic compounds as antioxidants: carbonic anhydrase isoenzymes inhibitors. Mini Rev. Med. Chem. 13, 408–430 (2013).Google Scholar
  35. 35.
    Abdulmumeen, H. A., Risikat, A. N. & Sururah, A. R. Food: Its preservatives, additives and applications. IJCBS 1, 36–47 (2012).Google Scholar
  36. 36.
    Bursal, E., Köksal, E., Gülçin, I., Bilsel, G. & Gören, A. C. Antioxidant activity and polyphenol content of cherry stem (Cerasus avium L.) determined by LC-MS/MS. Food Res. Inter. 51, 66–74 (2013).CrossRefGoogle Scholar
  37. 37.
    Köse, L. P. et al. LC-MS/MS analysis, antioxidant and anticholinergic properties of galanga (Alpinia officinarum Hance) rhizomes. Ind. Crops Prod. 74, 712–721 (2015).CrossRefGoogle Scholar
  38. 38.
    Tohma, H. et al. Antioxidant activity and phenolic compounds of ginger (Zingiber officinale Rosc.) determined by HPLC-MS/MS. Food Meas. 11, 556–566 (2017).CrossRefGoogle Scholar
  39. 39.
    Lennerz, B. S. et al. Effects of sodium benzoate, a widely used food preservative, on glucose homeostasis and metabolic profiles in humans. Mol. Gene. Metabol. 114, 73–79 (2015).CrossRefGoogle Scholar
  40. 40.
    Zengin, N., Yüzbasioḡlu, D., Ünal, F., Yilmaz, S. & Aksoy, H. The evaluation of the genotoxicity of two food preservatives: Sodium benzoate and potassium benzoate. Food Chem. Toxicol. 49, 763–769 (2011).CrossRefGoogle Scholar
  41. 41.
    Prival, J. M., Simmon, F. V. & Mortelmans, E. K. Bacterial mutagenicity testing of 49 food ingredients gives very few positive results. Mut. Res. 260, 321–329 (1991).CrossRefGoogle Scholar
  42. 42.
    Ishidate, M. et al. Primary mutagenicity screening of food additives currently used in Japan. Food Chem. Toxicol. 22, 623–636 (1984).CrossRefGoogle Scholar
  43. 43.
    Xing, W. & Zhang, Z. A comparison of SCE test in human lymphocytes and Vicia faba: a hopeful technique using plants to detect mutagens and carcinogens. Mut. Res. 241, 109–113 (1990).CrossRefGoogle Scholar
  44. 44.
    Türkoglu, S. Genotoxicity of five food preservatives tested on root tips of Allium cepa L. Mut. Res. 626, 4–14.(1990).CrossRefGoogle Scholar
  45. 45.
    Mpountoukas, P., Vantarakis, A., Sivridis, E. & Lialiaris, T. Cytogenetic study in cultured human lymphocytes treated with three commonly used preservatives. Food Chem. Toxicol. 46, 2390–2393 (2008).CrossRefGoogle Scholar
  46. 46.
    Demir, E., Kocaoglu, S. & Kaya, B. Assessment of genotoxic effects of benzyl derivatives by the Comet assay. Food Chem. Toxicol. 48, 1239–1242 (2010).CrossRefGoogle Scholar
  47. 47.
    Uçar, A., Yilmaz, S., Yilmaz, S. & Kiliç, M. S. A research on the genotoxicity of stevia in human lymphocytes. Drug Chem. Toxicol. 41, 221–224 (2017).CrossRefGoogle Scholar
  48. 48.
    Vijayan, V. & Mazumder, A. In vitro inhibition of food borne mutagens induced mutagenicity by cinnamon (Cinnamomum cassia) bark extract. Drug Chem. Toxicol. 41, 385–393 (2018).CrossRefGoogle Scholar
  49. 49.
    Kaslow, J. E. Red blood cell count, hemoglobin, hematocrit, MCV, MCH, MCHC, platelet count, and random distribution of width, (2015).Google Scholar
  50. 50.
    Knezevich, A. L. & Hogan, G. K. A long-term oral toxicity/carcinogenicity study of green No. 3 in rats. The 29 h meeting of the joint FAO/WHO Expert on food additives committee, University Press Cambridge, Cambridge, UK (1981).Google Scholar
  51. 51.
    Sharma, A., Goyal, R. P., Chakravarty, G. & Sharma, S. Haemotoxic effect of chocolate brown, a commonly used blend of permitted food colour on Swiss albino mice. Asian J. Exper. Sci. 19, 93–103 (2005).Google Scholar
  52. 52.
    Sharma, A., Goyal, R. P., Chakravarty, G. & Sharma, S. Orange-red a permitted food colors induced hematological changes in albino mice, Mus musculus. Bull. Pure App. Sci. 24A, 99–103 (2005).Google Scholar
  53. 53.
    Sharma, S. D. & Iqbal, M. Lithium induced toxicity in rats: A hematological, biochemical and histopathological study. Biol. Pharm. Bull. 28, 834–837 (2005).CrossRefGoogle Scholar
  54. 54.
    Sharma, S., Goyal, R. P., Chakravarty, G. & Sharma, A. Hematological and serological changes in the blood of albino mice, Mus Musculus. Ind. J. Environ. Sci. 10, 145–148 (2006).Google Scholar
  55. 55.
    Chakravarty, G., Goyal, R. P., Sharma, S. & Sharma, A. Hematological changes induced by a common non-permitted food colour, malachite green (MG) in Swiss albino mice. Ind. J. Environ. Sci. 9, 113–117 (2005).Google Scholar
  56. 56.
    Ashour, A. A. & Abdel-Aziz, I. Role of fast green on the blood of rats and the therapeutic action of vitamins C or E. Inter. J. Integ. Biol. 6, 6–11 (2009).Google Scholar
  57. 57.
    Khanna, S. K., Singh, G. B. & Singh, S. B. Non-permitted colours in food and their toxicity. J. Food Sci. Technol. 10, 33–36 (1973).Google Scholar
  58. 58.
    Lee, G. R. et al. Wintrobe’s Clinical Hematology (10th ed.), Baltimore, Maryland. Williams and Wilkins, Waverly Company (1998).Google Scholar
  59. 59.
    Helal, E. G. E. et al. Biochemical studies on the effect of ponceau 4r and/or vitamin E treatment on young male albino rats. Egypt. J. Hosp. Med. 31, 233–243 (2008).Google Scholar
  60. 60.
    Robert, A. & Budinsky, J. R. in Principles of Toxicology, Environmental and Industrial Applications. Hematotoxicity: Chemically Induced Toxicity of the Blood (eds Williams, P. L., James, R. C. & Roberts, S. M.) 87–110 (Wiley-Interscience Publication, New York, 2000).Google Scholar
  61. 61.
    Hashem, M. M., Atta, A. H., Arbid, M. S., Somaia, A. N. M. & Gihan, F. A. Immunological studies on amaranth, sunset yellow and curcumin as food coloring agents in albino rats. Food Chem. Toxicol. 48, 1581–1586 (2010).CrossRefGoogle Scholar
  62. 62.
    Himri, I. et al. A 90-day oral toxicity of tartrazine, a synthetic food dye, in rats. Inter. J. Pharm. Pharm. Sci. 3, 159–169 (2011).Google Scholar
  63. 63.
    Aboel-Zahab, H. et al. Physiological effects of some synthetic food colouring additives on rats. Bollettino Chimico Farmaceutico 136, 615–627 (1997).Google Scholar
  64. 64.
    Ching, F. P., Akpan, J. O., Ekpo, M. D. & Ekanem, J. A. Acute in-vivo histological effect of food colorants on some rat tissues. Global J. Pure Appl. Sci. 11, 241–247 (2005).Google Scholar
  65. 65.
    Sarkar, R. & Ghosh, A. R. Metanil yellow an azo dye induced histopathological and ultrastructural changes in albino rat (Rattus norvegicus). The Bioscan 7, 427–432 (2012).Google Scholar
  66. 66.
    Khidr, B. M., Makhlouf, M. M. & Ahmed, S. M. M. Histological and ultrastructural study on the effect of sodium benzoate on the liver of adult male albino rats. Assiut Univ. J. Zoo. 41, 11–39 (2012).Google Scholar
  67. 67.
    El-Shamy, K. I., Khadr, M. E., Morsy, F. A. & Hassanin, M. M. Toxic effect of some food additives on the vital activities of albino rats: green colour (tartrazine and brilliant blue). Egypt. J. Zoo. 32, 417–440 (1999).Google Scholar
  68. 68.
    Elwi, M. A., Saleh, A. S. & Kamel, A. I. in Textbook of Pathology. Necrosis, 31–46 (El-Naser Modern Bookshop, Cairo, Egypt, 1973).Google Scholar
  69. 69.
    El-Banhawy, M. A. & Ganzuri, M. A. Pathological effects of insecticides on acid phosphatase containing particles in mammalian liver cells. Proc. Egypt Soc. Environ. Sci. 55–70 (1980).Google Scholar
  70. 70.
    Popper, H. & Kent, G. Fibrosis in chronic liver disease. Clinical Gastroenterol. 4, 315–332 (1975).Google Scholar
  71. 71.
    Svegliati Baroni, G. et al. Fibrogenic effect of oxidative stress on rat hepatic stellate cells. Hepatol. 27, 720–726 (1998).CrossRefGoogle Scholar
  72. 72.
    Bakar, E. & Aktaç, T. Effects of sodium benzoate and citric acid on serum, liver and kidney tissue total sialic acid levels: an ultrastructural study. J. Appl. Biol. Sci. 8, 9–15 (2014).Google Scholar
  73. 73.
    Itokawa, Y., Abe, T., Tabei, R. & Tanaka, S. Renal and skeletal lesions in experimental cadmium poisoning. Arch. Environ. Health 28, 149–154 (1974).CrossRefGoogle Scholar
  74. 74.
    Gerundo, N., Alderman, D. J., Clifton-Hadely, R. S. & Feist, S. W. Pathological effects of repeated doses of malachite green. A preliminary study. J. Fish Diseases 14, 20–29 (1991).CrossRefGoogle Scholar
  75. 75.
    Hook, J. B. in Toxic Response of the Kidney. Casarett and Doull’s Toxicology. The Basic Science of Poisons (2nd ed.) 237 (Macmillan Publishing Co., New York, 1975.Google Scholar
  76. 76.
    Jones, D. B. in Kidneys. Anderson’s Pathology (ed Kissane, J. M.) 730 (The C.V. Mosby Company, St. Louis, MO, 1985).Google Scholar
  77. 77.
    Cameron, G. R. in Pathology of the Cell (Edinburgh & London, Oliver and Boyd, 1952).Google Scholar
  78. 78.
    FAO/WHO. Safety evaluation of certain food additives and contaminants, seventy-third meeting of the Joint FAO/WHO Expert Committee on Food Additives, WHO Technical Report Series, No. 966, Geneva (2011).Google Scholar
  79. 79.
    European Food Safety Authority. Scientific opinion on the re-evaluation of sunset yellow as a food additive on request from the European Commission: Question No EFSA-Q-2008-224. European Food Safety Authority. The EFSA Journal; No. 1330. 10.2903/j.efsa.2009.1330 (2009).Google Scholar
  80. 80.
    Drabkin, D. L. & Austin, J. M. Spectrophotometric studies, spectrophotometric constants for common hemoglobin derivatives in human, dog and rabbit blood. J. Biol. Chem. 98, 719–733 (1932).Google Scholar
  81. 81.
    Dacie, J. V. & Lewis, S. M. in Practical Hematology, 37–113 (Churchill Living Stone, UK, 1993).Google Scholar
  82. 82.
    Becton-Dickinson. in Unopette WBC/Platelet Determination for Manual Method (Rutherford, N. J., Becton, Dickinson, 1996).Google Scholar
  83. 83.
    Clinical Laboratory Standards Institute. Procedure for determining packed cell volume by the microhematocrit method; approved standard (3rd). CLSI document H7-A3 (ISBN 1-56238-413-9). CLSI, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania, 19087-1898, USA (2000).Google Scholar
  84. 84.
    Bancroft, J. D. & Stevens, A. in Theory and Practice of Histological Techniqu (4th ed.) 41–60 (Churchill living stone, Melbourne, New York, USA, 1982).Google Scholar
  85. 85.
    SPSS. Statistical Package for Social Science (SPSS) User’s Guide: Statistics. Version 12, Chicago, U. S. A SPSS Inc (2003).Google Scholar

Copyright information

© The Korean Society of Environmental Risk Assessment and Health Science and Springer 2019

Authors and Affiliations

  • Mohamed Yassin Ali
    • 1
  • Abdel Moniem Sadek Hassan
    • 1
    Email author
  • Zaher Ahmed Mohamed
    • 1
  • Mohamed Fawzy Ramadan
    • 2
    • 3
  1. 1.Biochemistry Department, Faculty of AgricultureFayoum UniversityFayoumEgypt
  2. 2.Agricultural Biochemistry Department, Faculty of AgricultureZagazig UniversityZagazigEgypt
  3. 3.Deanship of Scientific ResearchUmm Al-QuraMakkahSaudi Arabia

Personalised recommendations