Ameliorative Effect of Zinc Oxide Nanoparticles on Nicotine Induced Testicular Dysfunction; Biochemical and Histological Study

  • Abeer Ramzy Hussieny MahmoudEmail author
  • Nashwa Mohamad Mohamad Shalaby
Original Article



The aim of this study was to evaluate potential impact of zinc oxide nanoparticle on the possible testicular toxicity induced by nicotine.


24 adult male albino rats were divided into four groups; negative control group, zinc oxide nanoparticle group: rats were received 5 mg/kg/day zinc oxide nanoparticles orally, nicotine treated group: rats were administered nicotine (1 mg/kg/day) intraperitoneally and nicotine with zinc oxide nanoparticles: rats were treated with nicotine and zinc oxide nanoparticles daily for 28 days. Serum testosterone level, testicular malondialdehyde, SOD and catalase activities were measured. Testes were examined by light and electron microscopes as well.


Significant decreases of serum testosterone level, testicular SOD and catalase activity and significant increase of testicular MDA in nicotine treated group when compared with control group were detected. Zinc oxide nanoparticles administration reversed these changes.


Zinc oxide nanoparticles ameliorated nicotine induced testicular dysfunction.


Nicotine Zinc oxide nanoparticle Testicular dysfunction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study had no special funding from any organization.


  1. 1.
    Richter, P., Pechacek, T., Swahn, M. & Wagman, V. Reducing levels of toxic chemicals in cigarette smoke: a new Healthy People 2010 objective. Pub. Health Rep. 123, 30–38 (2008).CrossRefGoogle Scholar
  2. 2.
    Koh, H. K. It shouldn’t take another 50 years: accelerating momentum to end the tobacco epidemic. Clin. Cancer Res. 20, 1719–1720 (2014).CrossRefGoogle Scholar
  3. 3.
    Camargo, I. C., Leite, G. A., Pinto, T. & Ribeiro-Paes, J. T. Histopathologycal findings in the ovaries and uterus of albino female rats promoted by co-administration of synthetic steroids and nicotine. Exp. Tox. Pathol. 66, 195–202 (2014).CrossRefGoogle Scholar
  4. 4.
    Nitzkin, J. L. The case in favor of E-cigarettes for tobacco harm reduction. Int. J. Environ. Res. Pub. Heal. 11, 6459–6471 (2014).CrossRefGoogle Scholar
  5. 5.
    Walton, K. M., Abrams, D. B. & Bailey, W. C. NIH electronic cigarette workshop: developing a research agenda. Nico. Tob. Res. 17, 259–269 (2015).CrossRefGoogle Scholar
  6. 6.
    Goniewicz, M. L., Knysak, J. & Gawron, M. Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tob. Con. 23, 133–139 (2014).CrossRefGoogle Scholar
  7. 7.
    Goniewicz, M. L. et al. Exposure to nicotine and selected toxicants in cigarette smokers who switched to electronic cigarettes: A longitudinal within-subjects observational study. Nico. Tob. Res. 19, 160–167 (2017).CrossRefGoogle Scholar
  8. 8.
    Zalewski, P. D. et al. Zinc metabolism in airway epithelium and airway inflammation: basic mechanisms and clinical targets: a review. Pharmacol. Ther. 105, 127e49 (2005).CrossRefGoogle Scholar
  9. 9.
    Lu, W. P. et al. Zn (II)-curcumin protects against oxidative stress, deleterious changes in sperm parameters and histological alterations in a male mouse model of cyclophosphamide-induced reproductive damage. Environ. Toxicol. Pharmacol. 39, 515–524 (2015).CrossRefGoogle Scholar
  10. 10.
    Tuncer, I., Sunar, F., Toy, H., Baltaci, A. & Mogulkoc, R. Histological effects of zinc and melatonin on rat testes. Bratisl. Lek. Listy. 112, 425–427 (2011).Google Scholar
  11. 11.
    Talebi, A. R., Khorsandi, L. & Moridian, M. The effect of zinc oxide nanoparticles on mouse spermatogenesis. J. Assist. Reprod. Genet. 30, 1203–1209 (2013).CrossRefGoogle Scholar
  12. 12.
    Sri Sindhura, K., Selvam, P. P., Prasad, T. N. V. K. V. & Hussain, O. M. Synthesis, characterization and evaluation of effect of phytogenic zinc nanoparticles on soil exo-enzymes. Appl. Nanosci. 4, 819–827 (2014).CrossRefGoogle Scholar
  13. 13.
    Colagar, A. H., Marzony, E. T. & Chaichi, M. J. Zinc levels in seminal plasma are associated with sperm quality in fertile and infertile men. Nutr. Res. 29, 82–88 (2009).CrossRefGoogle Scholar
  14. 14.
    Zhang, Z. H. et al. Decline of semen quality and increase of leukocytes with cigarette smoking in infertile men. Iran. J. Reprod. Med. 11, 589–596 (2013).Google Scholar
  15. 15.
    Agarwal, A., Mulgund, A., Hamada, A. & Chyatte, M. R. A unique view on male infertility around the globe. Rep. Biol. Endo. 13, 37 (2015).CrossRefGoogle Scholar
  16. 16.
    Harlev, A., Agarwal, A., Gunes, S. O., Shetty, A. & Simon du Plessis, S. Smoking and male infertility: An evidence-based review. The World J. Men’s Heal. 33, 143–160 (2015).CrossRefGoogle Scholar
  17. 17.
    Mosbah, R., Yousef, M. I. & Mantovani, A. Nicotine-induced reproductive toxicity, oxidative damage, histological changes and haematotoxicity in male rats: The protective effects of green tea extract. Exp. Tox. Pathol. 67, 253–259 (2015).CrossRefGoogle Scholar
  18. 18.
    Kim, S. K. et al. Identification of three competitive inhibitors for membrane-associated, Mg2+-dependent and neutral 60 kDa sphingomyelinase activity. Arch. Pharm. Res. 28, 923–929 (2005).CrossRefGoogle Scholar
  19. 19.
    West, R. et al. A comparison of the abuse liability and dependence potential of nicotine patch, gum, spray and inhaler. Psychopharm. 149, 198–202 (2000).CrossRefGoogle Scholar
  20. 20.
    Budin, S. B. et al. Low-dose nicotine exposure induced the oxidative damage of reproductive organs and altered the sperm characteristics of adolescent male rats. Malays. J. Med. Sci. 24, 50–57 (2017).Google Scholar
  21. 21.
    Espitia, P. J. P. et al. Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications. Food Bio. Tech. 5, 1447–1464 (2012).CrossRefGoogle Scholar
  22. 22.
    Zheng, Y., Li, R. & Wang, Y. In vitro and in vivo biocompability of ZnO nanoparticles. Int. J. Mod. Phys. B. 23, 1566–1571 (2009).CrossRefGoogle Scholar
  23. 23.
    Sharma, V. et al. DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol. Lett. 185, 211–218 (2009).CrossRefGoogle Scholar
  24. 24.
    De Sá, J. S. et al. Consumption of oral hospital diets and percent adequacy of minerals in oncology patients as an indicative for the use of oral supplements. Clin. Nutr. 33, 655–661 (2014).CrossRefGoogle Scholar
  25. 25.
    Guan, R. et al. Cytotoxicity, oxidative stress, and genotoxicity in human hepatocyte and embryonic kidney cells exposed to ZnO nanoparticles. Nano. Res. Lett. 7, 602 (2012).CrossRefGoogle Scholar
  26. 26.
    Oyeyipo, I. P., Raji, Y. & Bolarinwa, A. F. Nicotine alters male reproductive hormones in male albino rats: The role of cessation. J. Hum. Reprod. Sci. 6, 40–44 (2013).CrossRefGoogle Scholar
  27. 27.
    Blanco-Muñoz, J., Lacasaña, M. & Aguilar-Garduño, C. Effect of current tobacco on the male reproductive hormone profile. Sci. Total. Environ. 426, 100–105 (2012).CrossRefGoogle Scholar
  28. 28.
    Oyeyipo, I. P., Raji, Y. & Bolarinwa, A. F. Antioxidant profile changes in reproductive tissues of rats treated with nicotine. J. Hum. Reprod. Sci. 7, 41–46 (2014).CrossRefGoogle Scholar
  29. 29.
    Das, S. et al. Nicotine induced pro-oxidant and antioxidant imbalance in rat lymphocytes: In vivo dose and time dependent approaches. Toxicol. Mech. Meth. 22, 711–720 (2012).CrossRefGoogle Scholar
  30. 30.
    Sharpe, P. C. et al. Glucose-induced oxidative stress in vascular contractile cells: Comparison of aortic smooth muscle cells and retinal pericytes. Diabetes 47, 801–809 (1998).CrossRefGoogle Scholar
  31. 31.
    Ribière, C. et al. Effects of chronic ethanol administration on free radical defence in rat myocardium. Biochem. Pharmacol. 44, 1495–1500 (1992).CrossRefGoogle Scholar
  32. 32.
    Das, S. et al. Nicotine induced pro-oxidant and antioxidant imbalance in rat lymphocytes: In vivo dose and time dependent approaches. Toxicol. Mech. Meth. 22, 711–720 (2012).CrossRefGoogle Scholar
  33. 33.
    Aydos, K., Güven, M. C., Can, B. & Ergun, A. Nicotine toxicity to the ultrastructure of the testis in rats. B. J. U. Int. 88, 622–626 (2001).CrossRefGoogle Scholar
  34. 34.
    Mosadegh, M., Hasanzadeh, S. & Razi, M. Nicotine-induced damages in testicular tissue of rats; evidences for bcl-2, p53 and caspase-3 expression. Iran. J. Basic Med. Sci. 20, 199–208 (2017).Google Scholar
  35. 35.
    Oteiza, P. I., Adonaylo, V. N. & Keen, C. L. Cadmium-induced testes oxidative damage in rats can be influenced by dietary zinc intake. Toxicol. 137, 13–22 (1999).CrossRefGoogle Scholar
  36. 36.
    Murali, M. et al. Antibacterial and antioxidant properties of biosynthesized zinc oxide nanoparticles from Ceropegia candelabrum L.-An endemic species. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 179, 104–109 (2017).CrossRefGoogle Scholar
  37. 37.
    Torabi, F., Shafaroudi, M. M. & Rezaei, N. Combined protective effect of zinc oxide nanoparticles and melatonin on cyclophosphamide-induced toxicity in testicular histology and sperm parameters in adult Wistar rats. Int. J. Reprod. Biomed. 15, 403–412 (2017).CrossRefGoogle Scholar
  38. 38.
    Badkoobeh, P. et al. Effect of nano-zinc oxide on doxorubicin-induced oxidative stress and sperm disorders in adult male Wistar rats. Iran J. Reprod. Med. 11, 355 (2013).Google Scholar
  39. 39.
    Ebisch, I. et al. The importance of folate, zinc and antioxidants in the pathogenesis and prevention of subfertility. Hum. Reprod. Update 13, 163–174 (2007).CrossRefGoogle Scholar
  40. 40.
    Ozturk, A. et al. Effects of zinc deficiency and supplementation on malondialdehyde and glutathione levels in blood and tissues of rats performing swimming exercise. Biol. Trace Elem. Res. 94, 157–166 (2003).CrossRefGoogle Scholar
  41. 41.
    Umrani, R. D. & Paknikar, K. M. Zinc oxide nanoparticles show antidiabetic activity in streptozotocin-induced Types-1 and 2 diabetic rats. Nanomed. 9, 89–104 (2014).CrossRefGoogle Scholar
  42. 42.
    Zirkin, B. & Chen, H. Regulation of Leydig cell steroidogenic function during aging. Biol. Reprod. 63, 977–981 (2000).CrossRefGoogle Scholar
  43. 43.
    Durak, I. et al. High-temperature effects on antioxidant systems and toxic product formation in nutritional oils. J. Toxicol. Environ. Health 57, 585–589 (1999).CrossRefGoogle Scholar
  44. 44.
    Luck, H. Catalase. in Methods of Enzymatic Analysis (eds Begmeyer, H. U.) 895–897 (Academic press, New York, 1963).Google Scholar
  45. 45.
    Jain, S.K. et al. Erythrocyte Membrane Lipid Peroxidation and Glycolylated Hemoglobin in Diabetes. Diabetes 38, 1539–1543 (1989).CrossRefGoogle Scholar
  46. 46.
    Ohkawa, H., Ohishi, N. & Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351–358 (1979).CrossRefGoogle Scholar
  47. 47.
    Bancroft, J. D. & Layton, C. The Hematoxylin and eosin. in Theory Practice of histological techniques (eds Suvarna, S. K., Layton, C. & Bancroft, J. D.) 179–220 (Churchill Livingstone of El Sevier, Philadelphia, 2013).Google Scholar
  48. 48.
    Goodhew, P. J., Humphreys, J. & Beanland, R. in Electron Microscopey and Analysis 4th Edn (Taylor and Francis, London, New York, 2003).Google Scholar

Copyright information

© The Korean Society of Environmental Risk Assessment and Health Science and Springer 2019

Authors and Affiliations

  • Abeer Ramzy Hussieny Mahmoud
    • 1
    Email author
  • Nashwa Mohamad Mohamad Shalaby
    • 1
  1. 1.Department of Forensic Medicine and Clinical Toxicology, Faculty of MedicineZagazig UniversitySharkia GovernorateEgypt

Personalised recommendations